These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27717963)

  • 1. A unique intracellular compartment formed during the oligotrophic growth of Rhodococcus erythropolis N9T-4.
    Yoshida N; Yano T; Kedo K; Fujiyoshi T; Nagai R; Iwano M; Taguchi E; Nishida T; Takagi H
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):331-340. PubMed ID: 27717963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional analysis of putative transporters involved in oligotrophic growth of Rhodococcus erythropolis N9T-4.
    Matsuoka T; Yoshida N
    Appl Microbiol Biotechnol; 2019 May; 103(10):4167-4175. PubMed ID: 30953120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of atmospheric ammonia by an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4.
    Yoshida N; Inaba S; Takagi H
    J Biosci Bioeng; 2014 Jan; 117(1):28-32. PubMed ID: 23849805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The glyoxylate shunt is essential for CO2-requiring oligotrophic growth of Rhodococcus erythropolis N9T-4.
    Yano T; Yoshida N; Yu F; Wakamatsu M; Takagi H
    Appl Microbiol Biotechnol; 2015 Jul; 99(13):5627-37. PubMed ID: 25750047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4, isolated from crude oil.
    Ohhata N; Yoshida N; Egami H; Katsuragi T; Tani Y; Takagi H
    J Bacteriol; 2007 Oct; 189(19):6824-31. PubMed ID: 17675378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of an effective oligotrophic cultivation system for Rhodococcus erythropolis N9T-4.
    Matsuoka T; Yoshida N
    Biosci Biotechnol Biochem; 2018 Sep; 82(9):1652-1655. PubMed ID: 29862898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular accumulation of trehalose and glycogen in an extreme oligotroph, Rhodococcus erythropolis N9T-4.
    Yano T; Funamizu Y; Yoshida N
    Biosci Biotechnol Biochem; 2016; 80(3):610-3. PubMed ID: 26540516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligotrophic Gene Expression in
    Ikeda Y; Kishimoto M; Shintani M; Yoshida N
    Microorganisms; 2022 Aug; 10(9):. PubMed ID: 36144327
    [No Abstract]   [Full Text] [Related]  

  • 9. Gene expression analysis of methylotrophic oxidoreductases involved in the oligotrophic growth of Rhodococcus erythropolis N9T-4.
    Yoshida N; Hayasaki T; Takagi H
    Biosci Biotechnol Biochem; 2011; 75(1):123-7. PubMed ID: 21228466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon monoxide utilization of an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4.
    Yano T; Yoshida N; Takagi H
    J Biosci Bioeng; 2012 Jul; 114(1):53-5. PubMed ID: 22561879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a transcriptional regulator for oligotrophy-responsive promoter in
    Ikegaya R; Shintani M; Kimbara K; Fakuda M; Yoshida N
    Biosci Biotechnol Biochem; 2020 Apr; 84(4):865-868. PubMed ID: 31884880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyphosphate stores enhance the ability of Vibrio cholerae to overcome environmental stresses in a low-phosphate environment.
    Jahid IK; Silva AJ; Benitez JA
    Appl Environ Microbiol; 2006 Nov; 72(11):7043-9. PubMed ID: 16950899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of a genome-scale metabolic network of Rhodococcus erythropolis for desulfurization studies.
    Aggarwal S; Karimi IA; Lee DY
    Mol Biosyst; 2011 Nov; 7(11):3122-31. PubMed ID: 21912787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Surfactant production by the Rhodococcus erythropolis sH-5 bacterium grown on various carbon sources].
    Gogotov IN; Khodakov RS
    Prikl Biokhim Mikrobiol; 2008; 44(2):207-12. PubMed ID: 18669264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and structural characterisation of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP.
    Niescher S; Wray V; Lang S; Kaschabek SR; Schlömann M
    Appl Microbiol Biotechnol; 2006 May; 70(5):605-11. PubMed ID: 16133336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyphosphate kinase of Lysinibacillus sphaericus and its effects on accumulation of polyphosphate and bacterial growth.
    Shi T; Ge Y; Zhao N; Hu X; Yuan Z
    Microbiol Res; 2015 Mar; 172():41-7. PubMed ID: 25541179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Production of surfactants by Rhodococcus erythropolis strain EK-1, grown on hydrophilic and hydrophobic substrates].
    Pirog TP; Shevchuk TA; Voloshina IN; Karpenko EV
    Prikl Biokhim Mikrobiol; 2004; 40(5):544-50. PubMed ID: 15553786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horizontal transfer of bacterial polyphosphate kinases to eukaryotes: implications for the ice age and land colonisation.
    Whitehead MP; Hooley P; W Brown MR
    BMC Res Notes; 2013 Jun; 6():221. PubMed ID: 23738841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of polyphosphate by polyphosphate kinases and its relationship to poly(3-hydroxybutyrate) accumulation in Ralstonia eutropha strain H16.
    Tumlirsch T; Sznajder A; Jendrossek D
    Appl Environ Microbiol; 2015 Dec; 81(24):8277-93. PubMed ID: 26407880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1.
    Sokolovská I; Rozenberg R; Riez C; Rouxhet PG; Agathos SN; Wattiau P
    Appl Environ Microbiol; 2003 Dec; 69(12):7019-27. PubMed ID: 14660344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.