BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 27718230)

  • 1. Computer vision-based method for classification of wheat grains using artificial neural network.
    Sabanci K; Kayabasi A; Toktas A
    J Sci Food Agric; 2017 Jun; 97(8):2588-2593. PubMed ID: 27718230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grain classifier with computer vision using adaptive neuro-fuzzy inference system.
    Sabanci K; Toktas A; Kayabasi A
    J Sci Food Agric; 2017 Sep; 97(12):3994-4000. PubMed ID: 28194800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of sunn pest-damaged wheat grains using artificial bee colony optimization-based artificial intelligence techniques.
    Sabanci K
    J Sci Food Agric; 2020 Jan; 100(2):817-824. PubMed ID: 31646637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bread and durum wheat classification using wavelet based image fusion.
    Sabanci K; Aslan MF; Durdu A
    J Sci Food Agric; 2020 Dec; 100(15):5577-5585. PubMed ID: 32608512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of spinal deformity classification with total curvature analysis and artificial neural network.
    Lin H
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):376-82. PubMed ID: 18232388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical application of modified bag-of-features coupled with hybrid neural-based classifier in dengue fever classification using gene expression data.
    Chatterjee S; Dey N; Shi F; Ashour AS; Fong SJ; Sen S
    Med Biol Eng Comput; 2018 Apr; 56(4):709-720. PubMed ID: 28891000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolizable energy and digestible amino acid prediction of wheat using mathematical models.
    Soleimani Roudi P; Golian A; Sedghi M
    Poult Sci; 2012 Aug; 91(8):2055-62. PubMed ID: 22802204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NNERVE: neural network extraction of repetitive vectors for electromyography--Part I: Algorithm.
    Hassoun MH; Wang C; Spitzer AR
    IEEE Trans Biomed Eng; 1994 Nov; 41(11):1039-52. PubMed ID: 8001993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dominant features on neural network performance in the classification of mammographic lesions.
    Huo Z; Giger ML; Metz CE
    Phys Med Biol; 1999 Oct; 44(10):2579-95. PubMed ID: 10533930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of wheat kernels by fusion of RGB, SWIR, and VNIR samples.
    Özkan K; Işık Ş; Yavuz BT
    J Sci Food Agric; 2019 Aug; 99(11):4977-4984. PubMed ID: 30977132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic identification of human helminth eggs on microscopic fecal specimens using digital image processing and an artificial neural network.
    Yang YS; Park DK; Kim HC; Choi MH; Chai JY
    IEEE Trans Biomed Eng; 2001 Jun; 48(6):718-30. PubMed ID: 11396601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A preliminary study on automated freshwater algae recognition and classification system.
    Mosleh MA; Manssor H; Malek S; Milow P; Salleh A
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S25. PubMed ID: 23282059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An automated cervical pre-cancerous diagnostic system.
    Mat-Isa NA; Mashor MY; Othman NH
    Artif Intell Med; 2008 Jan; 42(1):1-11. PubMed ID: 17996432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinguishing between Bread Wheat and Spelt Grains Using Molecular Markers and Spectroscopy.
    Curzon AY; Chandrasekhar K; Nashef YK; Abbo S; Bonfil DJ; Reifen R; Bar-El S; Avneri A; Ben-David R
    J Agric Food Chem; 2019 Apr; 67(13):3837-3841. PubMed ID: 30807140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of wheat varieties: use of two-dimensional gel electrophoresis for varieties that can not be classified by matrix assisted laser desorpiton/ionization-time of flight-mass spectrometry and an artificial neural network.
    Jacobsen S; Nesić L; Petersen M; Søndergaard I
    Electrophoresis; 2001 Apr; 22(6):1242-5. PubMed ID: 11358151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image analysis and multi-layer perceptron artificial neural networks for the discrimination between benign and malignant endometrial lesions.
    Makris GM; Pouliakis A; Siristatidis C; Margari N; Terzakis E; Koureas N; Pergialiotis V; Papantoniou N; Karakitsos P
    Diagn Cytopathol; 2017 Mar; 45(3):202-211. PubMed ID: 28160459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural network reconstruction of single-photon emission computed tomography images.
    Kerr JP; Bartlett EB
    J Digit Imaging; 1995 Aug; 8(3):116-26. PubMed ID: 7488654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving artificial neural network model predictions of daily average PM10 concentrations by applying principle component analysis and implementing seasonal models.
    Taşpınar F
    J Air Waste Manag Assoc; 2015 Jul; 65(7):800-9. PubMed ID: 26079553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of neural networks in histopathology.
    Becker RL
    Pathologica; 1995 Jun; 87(3):246-54. PubMed ID: 8570285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.