BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 27718264)

  • 1. Rapid QM/MM approach for biomolecular systems under periodic boundary conditions: Combination of the density-functional tight-binding theory and particle mesh Ewald method.
    Nishizawa H; Okumura H
    J Comput Chem; 2016 Dec; 37(31):2701-2711. PubMed ID: 27718264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragment-based quantum mechanical methods for periodic systems with Ewald summation and mean image charge convention for long-range electrostatic interactions.
    Zhang P; Truhlar DG; Gao J
    Phys Chem Chem Phys; 2012 Jun; 14(21):7821-9. PubMed ID: 22552612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations.
    Ojeda-May P; Pu J
    J Chem Phys; 2015 Nov; 143(17):174111. PubMed ID: 26547162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytic Gradients for the Electrostatic Embedding QM/MM Model in Periodic Boundary Conditions Using Particle-Mesh Ewald Sums and Electrostatic Potential Fitted Charge Operators.
    Bonfrate S; Ferré N; Huix-Rotllant M
    J Chem Theory Comput; 2024 May; 20(10):4338-4349. PubMed ID: 38712506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new smoothing function to introduce long-range electrostatic effects in QM/MM calculations.
    Fang D; Duke RE; Cisneros GA
    J Chem Phys; 2015 Jul; 143(4):044103. PubMed ID: 26233103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ewald mesh method for quantum mechanical calculations.
    Chang CM; Shao Y; Kong J
    J Chem Phys; 2012 Mar; 136(11):114112. PubMed ID: 22443753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Software Infrastructure for Next-Generation QM/MM-ΔMLP Force Fields.
    Giese TJ; Zeng J; Lerew L; McCarthy E; Tao Y; Ekesan Ş; York DM
    J Phys Chem B; 2024 Jun; ():. PubMed ID: 38905451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-range electrostatic corrections in multipolar/polarizable QM/MM simulations.
    Kratz EG; Duke RE; Cisneros GA
    Theor Chem Acc; 2016 Jul; 135(7):. PubMed ID: 28367078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalization of the Gaussian electrostatic model: extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods.
    Cisneros GA; Piquemal JP; Darden TA
    J Chem Phys; 2006 Nov; 125(18):184101. PubMed ID: 17115732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmark Study of the SCC-DFTB Approach for a Biomolecular Proton Channel.
    Liang R; Swanson JM; Voth GA
    J Chem Theory Comput; 2014 Jan; 10(1):451-462. PubMed ID: 25104919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amber free energy tools: Interoperable software for free energy simulations using generalized quantum mechanical/molecular mechanical and machine learning potentials.
    Tao Y; Giese TJ; Ekesan Ş; Zeng J; Aradi B; Hourahine B; Aktulga HM; Götz AW; Merz KM; York DM
    J Chem Phys; 2024 Jun; 160(22):. PubMed ID: 38856060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multipolar Ewald methods, 1: theory, accuracy, and performance.
    Giese TJ; Panteva MT; Chen H; York DM
    J Chem Theory Comput; 2015 Feb; 11(2):436-50. PubMed ID: 25691829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smooth particle mesh Ewald-integrated stochastic Lanczos many-body dispersion algorithm.
    Poier PP; Lagardère L; Piquemal JP
    J Chem Phys; 2023 Oct; 159(15):. PubMed ID: 37861116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PMC-IZ: A Simple Algorithm for the Electrostatics Calculation in Slab Geometric Molecular Dynamics Simulations.
    Huang YP; Xia Y; Yang L; Gao YQ
    J Chem Theory Comput; 2024 Jan; 20(2):832-841. PubMed ID: 38196086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density Functional Theory and Density Functional Tight Binding Studies of Thiamine Hydrochloride Hydrates.
    Napiórkowska E; Szeleszczuk Ł; Milcarz K; Pisklak DM
    Molecules; 2023 Nov; 28(22):. PubMed ID: 38005219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Ewald methods for evaluating the electrostatic interactions of charge systems: similarity and difference.
    Fukuda I; Nakamura H
    Biophys Rev; 2022 Dec; 14(6):1315-1340. PubMed ID: 36659982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unification of Ewald and shifted force methods to calculate Coulomb interactions in molecular simulations.
    Hammonds KD; Heyes DM
    J Chem Phys; 2024 Jun; 160(24):. PubMed ID: 38912623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ICSM: An order N method for calculating electrostatic interactions added to TINKER.
    Baker K; Baumketner A; Lin Y; Deng S; Jacobs D; Cai W
    Comput Phys Commun; 2013 Jan; 184(1):19-26. PubMed ID: 23087451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the Mechanisms behind Non-aromatic Fluorescence with the Density Functional Tight Binding Method.
    Díaz Mirón G; Lien-Medrano CR; Banerjee D; Morzan UN; Sentef MA; Gebauer R; Hassanali A
    J Chem Theory Comput; 2024 May; 20(9):3864-3878. PubMed ID: 38634760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Obtaining Robust Density Functional Tight-Binding Parameters for Solids across the Periodic Table.
    Cui M; Reuter K; Margraf JT
    J Chem Theory Comput; 2024 Jun; 20(12):5276-5290. PubMed ID: 38865478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.