BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27718579)

  • 1. Superior Catalytic Performance of Gold Nanoparticles Within Small Cross-Linked Lysozyme Crystals.
    Liu M; Wang L; Huang R; Yu Y; Su R; Qi W; He Z
    Langmuir; 2016 Oct; 32(42):10895-10904. PubMed ID: 27718579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts.
    Liang M; Wang L; Liu X; Qi W; Su R; Huang R; Yu Y; He Z
    Nanotechnology; 2013 Jun; 24(24):245601. PubMed ID: 23680924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic reduction of 4-nitrophenol and photo inhibition of Pseudomonas aeruginosa using gold nanoparticles as photocatalyst.
    Khan S; Runguo W; Tahir K; Jichuan Z; Zhang L
    J Photochem Photobiol B; 2017 May; 170():181-187. PubMed ID: 28437746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Synthesis of Gold Nanoparticles on Wool Powder and Their Catalytic Application.
    Tang B; Zhou X; Zeng T; Lin X; Zhou J; Ye Y; Wang X
    Materials (Basel); 2017 Mar; 10(3):. PubMed ID: 28772656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au.
    Shen W; Qu Y; Pei X; Li S; You S; Wang J; Zhang Z; Zhou J
    J Hazard Mater; 2017 Jan; 321():299-306. PubMed ID: 27637096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphotungstate-sandwiched between cerium oxide and gold nanoparticles exhibit enhanced catalytic reduction of 4-nitrophenol and peroxidase enzyme-like activity.
    Shah F; Yadav N; Singh S
    Colloids Surf B Biointerfaces; 2021 Feb; 198():111478. PubMed ID: 33272726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green synthesis of gold nanoparticles using fungus Mariannaea sp. HJ and their catalysis in reduction of 4-nitrophenol.
    Pei X; Qu Y; Shen W; Li H; Zhang X; Li S; Zhang Z; Li X
    Environ Sci Pollut Res Int; 2017 Sep; 24(27):21649-21659. PubMed ID: 28752308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TEMPO-oxidized bacterial cellulose nanofibers-supported gold nanoparticles with superior catalytic properties.
    Chen Y; Chen S; Wang B; Yao J; Wang H
    Carbohydr Polym; 2017 Mar; 160():34-42. PubMed ID: 28115098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Au nanoparticles decorated graphene oxide nanosheets: noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol.
    Lu W; Ning R; Qin X; Zhang Y; Chang G; Liu S; Luo Y; Sun X
    J Hazard Mater; 2011 Dec; 197():320-6. PubMed ID: 22019107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-directed gold nanoparticles with excellent catalytic activity for 4-nitrophenol reduction.
    Liu K; Han L; Zhuang J; Yang DP
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():429-434. PubMed ID: 28576005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of size-controllable gold nanoparticles immobilized on polysaccharide nanotubes by in situ one-pot synthesis.
    Meng Y; Cai L; Xu X; Zhang L
    Int J Biol Macromol; 2018 Jul; 113():240-247. PubMed ID: 29476855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.
    Haldar KK; Kundu S; Patra A
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21946-53. PubMed ID: 25456348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles.
    Yang T; Li Z; Wang L; Guo C; Sun Y
    Langmuir; 2007 Oct; 23(21):10533-8. PubMed ID: 17867715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancement of Microwave-Assisted Biosynthesis for Preparing Au Nanoparticles Using
    Nguyen VP; Le Trung H; Nguyen TH; Hoang D; Tran TH
    ACS Omega; 2021 Nov; 6(47):32198-32207. PubMed ID: 34870040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical porous carbon material restricted Au catalyst for highly catalytic reduction of nitroaromatics.
    Qin L; Yi H; Zeng G; Lai C; Huang D; Xu P; Fu Y; He J; Li B; Zhang C; Cheng M; Wang H; Liu X
    J Hazard Mater; 2019 Dec; 380():120864. PubMed ID: 31326837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyethylenimine-mediated synthetic insertion of gold nanoparticles into mesoporous silica nanoparticles for drug loading and biocatalysis.
    Pandey PC; Pandey G; Narayan RJ
    Biointerphases; 2017 Mar; 12(1):011005. PubMed ID: 28347142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Redox Synthesis of Highly Stable Au/Electroactive Polyimide Composite and Its Application on 4-Nitrophenol Reduction.
    Chen YS; Shi WZ; Luo KH; Yeh JM; Tsai MH
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Au nanoparticles on citrate-functionalized graphene nanosheets with a high peroxidase-like performance.
    Chen X; Tian X; Su B; Huang Z; Chen X; Oyama M
    Dalton Trans; 2014 May; 43(20):7449-54. PubMed ID: 24573020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial Cellulose Supported Gold Nanoparticles with Excellent Catalytic Properties.
    Chen M; Kang H; Gong Y; Guo J; Zhang H; Liu R
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21717-26. PubMed ID: 26357993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendronized triazolyl-containing ferrocenyl polymers as stabilizers of gold nanoparticles for recyclable two-phase reduction of 4-nitrophenol.
    Liu F; Liu X; Astruc D; Gu H
    J Colloid Interface Sci; 2019 Jan; 533():161-170. PubMed ID: 30153593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.