These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 27719899)
1. Alkali solution extraction of rice residue protein isolates: Influence of alkali concentration on protein functional, structural properties and lysinoalanine formation. Hou F; Ding W; Qu W; Oladejo AO; Xiong F; Zhang W; He R; Ma H Food Chem; 2017 Mar; 218():207-215. PubMed ID: 27719899 [TBL] [Abstract][Full Text] [Related]
2. Alkali extraction of rice residue protein isolates: Effects of alkali treatment conditions on lysinoalanine formation and structural characterization of lysinoalanine-containing protein. Zhang Z; Wang Y; Dai C; He R; Ma H Food Chem; 2018 Sep; 261():176-183. PubMed ID: 29739580 [TBL] [Abstract][Full Text] [Related]
3. Effect of alkali concentration on digestibility and absorption characteristics of rice residue protein isolates and lysinoalanine. Zhang Z; Wang Y; Li Y; Dai C; Ding Q; Hong C; He Y; He R; Ma H Food Chem; 2019 Aug; 289():609-615. PubMed ID: 30955655 [TBL] [Abstract][Full Text] [Related]
4. Effect of basic alkali-pickling conditions on the production of lysinoalanine in preserved eggs. Zhao Y; Luo X; Li J; Xu M; Tu Y Poult Sci; 2015 Sep; 94(9):2272-9. PubMed ID: 26188034 [TBL] [Abstract][Full Text] [Related]
5. Effect of dual-frequency ultrasound on the formation of lysinoalanine and structural characterization of rice dreg protein isolates. Zhang Z; Wang Y; Jiang H; Dai C; Xing Z; Kumah Mintah B; Dabbour M; He R; Ma H Ultrason Sonochem; 2020 Oct; 67():105124. PubMed ID: 32298973 [TBL] [Abstract][Full Text] [Related]
6. Formation of lysinoalanine in egg white under alkali treatment. Zhao Y; Luo X; Li J; Xu M; Tu Y Poult Sci; 2016 Mar; 95(3):660-7. PubMed ID: 26772660 [TBL] [Abstract][Full Text] [Related]
7. Lysinoalanine formation and conformational characteristics of rice dreg protein isolates by multi-frequency countercurrent S-type sonochemical action. Wang Y; Zhang Z; Li Y; Jiang H; Kumah Mintah B; Dabbour M; He R; Ma H Ultrason Sonochem; 2020 Dec; 69():105257. PubMed ID: 32688247 [TBL] [Abstract][Full Text] [Related]
8. [The effect of enzymatic modification on lysinoalanine formation in field-bean protein isolate and beta-casein]. Nötzold H; Winkler H; Wiedemann B; Ludwig E Nahrung; 1984; 28(3):299-308. PubMed ID: 6429545 [TBL] [Abstract][Full Text] [Related]
9. Changes of amino acid composition and lysinoalanine formation in alkali-pickled duck eggs. Chang HM; Tsai CF; Li CF J Agric Food Chem; 1999 Apr; 47(4):1495-500. PubMed ID: 10564005 [TBL] [Abstract][Full Text] [Related]
10. Synergistic effects of pH shift and heat treatment on solubility, physicochemical and structural properties, and lysinoalanine formation in silkworm pupa protein isolates. Xu H; Pan J; Dabbour M; Kumah Mintah B; Chen W; Yang F; Zhang Z; Cheng Y; Dai C; He R; Ma H Food Res Int; 2023 Mar; 165():112554. PubMed ID: 36869538 [TBL] [Abstract][Full Text] [Related]
11. Inhibition Effect of Ultrasound on the Formation of Lysinoalanine in Rapeseed Protein Isolates during pH Shift Treatment. Li Y; Zhang Z; Ren W; Wang Y; Mintah BK; Dabbour M; Hou Y; He R; Cheng Y; Ma H J Agric Food Chem; 2021 Aug; 69(30):8536-8545. PubMed ID: 34296617 [TBL] [Abstract][Full Text] [Related]
12. Changes in physicochemical, structural and functional properties, and lysinoalanine formation during the unfolding and refolding of pH-shifted black soldier fly larvae albumin. Pan J; Xu H; Dabbour M; Mintah BK; Huang L; Dai C; He R; Ma H Int J Biol Macromol; 2024 Jun; 272(Pt 1):132801. PubMed ID: 38825263 [TBL] [Abstract][Full Text] [Related]
13. Effects of oxidative modification by 13-hydroperoxyoctadecadienoic acid on the structure and functional properties of rice protein. Wu X; Li F; Wu W Food Res Int; 2020 Jun; 132():109096. PubMed ID: 32331648 [TBL] [Abstract][Full Text] [Related]
14. Alkali-Induced Protein Structural, Foaming, and Air-Water Interfacial Property Changes and Quantitative Proteomic Analysis of Buckwheat Sourdough Liquor. Song MK; Guo XN; Zhu KX J Agric Food Chem; 2024 Jul; 72(27):15387-15397. PubMed ID: 38920293 [TBL] [Abstract][Full Text] [Related]
15. Characterization of rice starch and protein obtained by a fast alkaline extraction method. Souza Dd; Sbardelotto AF; Ziegler DR; Marczak LD; Tessaro IC Food Chem; 2016 Jan; 191():36-44. PubMed ID: 26258699 [TBL] [Abstract][Full Text] [Related]
16. Biological effects of alkali-treated protein and lysinoalanine: an overview. Gould DH; MacGregor JT Adv Exp Med Biol; 1977; 86B():29-48. PubMed ID: 20750 [TBL] [Abstract][Full Text] [Related]
17. Enzymolysis kinetics and structural characteristics of rice protein with energy-gathered ultrasound and ultrasound assisted alkali pretreatments. Li S; Yang X; Zhang Y; Ma H; Qu W; Ye X; Muatasim R; Oladejo AO Ultrason Sonochem; 2016 Jul; 31():85-92. PubMed ID: 26964926 [TBL] [Abstract][Full Text] [Related]
18. Protein-alkali reactions: chemistry, toxicology, and nutritional consequences. Friedman M; Gumbmann MR; Masters PM Adv Exp Med Biol; 1984; 177():367-412. PubMed ID: 6388264 [TBL] [Abstract][Full Text] [Related]
19. Effect of protein treatment on the enzymatic hydrolysis of lysinoalanine and other amino acids. Savoie L Adv Exp Med Biol; 1984; 177():413-22. PubMed ID: 6437165 [TBL] [Abstract][Full Text] [Related]
20. Mechanistic insights into solubilization of rice protein isolates by freeze-milling combined with alkali pretreatment. Wang T; Zhang H; Wang L; Wang R; Chen Z Food Chem; 2015 Jul; 178():82-8. PubMed ID: 25704687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]