These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 27720078)

  • 21. Species interactions under climate change: connecting kinetic effects of temperature on individuals to community dynamics.
    Boukal DS; Bideault A; Carreira BM; Sentis A
    Curr Opin Insect Sci; 2019 Oct; 35():88-95. PubMed ID: 31445412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of geographic variation in thermal performance curves in the face of climate change and implications for biotic interactions.
    Tüzün N; Stoks R
    Curr Opin Insect Sci; 2018 Oct; 29():78-84. PubMed ID: 30551830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined effects of environmental disturbance and climate warming on insect herbivory in mountain birch in subarctic forests: Results of 26-year monitoring.
    Kozlov MV; Zverev V; Zvereva EL
    Sci Total Environ; 2017 Dec; 601-602():802-811. PubMed ID: 28578238
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanistic forecasts of species responses to climate change: The promise of biophysical ecology.
    Briscoe NJ; Morris SD; Mathewson PD; Buckley LB; Jusup M; Levy O; Maclean IMD; Pincebourde S; Riddell EA; Roberts JA; Schouten R; Sears MW; Kearney MR
    Glob Chang Biol; 2023 Mar; 29(6):1451-1470. PubMed ID: 36515542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The fingerprints of global climate change on insect populations.
    Boggs CL
    Curr Opin Insect Sci; 2016 Oct; 17():69-73. PubMed ID: 27720076
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature Sensitivity of Fitness Components across Life Cycles Drives Insect Responses to Climate Change.
    Johnson CA; Ren R; Buckley LB
    Am Nat; 2023 Dec; 202(6):753-766. PubMed ID: 38033177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of tolerance variation in vulnerability forecasting of insects.
    Diamond SE; Yilmaz AR
    Curr Opin Insect Sci; 2018 Oct; 29():85-92. PubMed ID: 30551831
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insect overwintering in a changing climate.
    Bale JS; Hayward SA
    J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. What Can Plasticity Contribute to Insect Responses to Climate Change?
    Sgrò CM; Terblanche JS; Hoffmann AA
    Annu Rev Entomol; 2016; 61():433-51. PubMed ID: 26667379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using insect natural history collections to study global change impacts: challenges and opportunities.
    Kharouba HM; Lewthwaite JMM; Guralnick R; Kerr JT; Vellend M
    Philos Trans R Soc Lond B Biol Sci; 2018 Nov; 374(1763):. PubMed ID: 30455219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting responses to climate change requires all life-history stages.
    Zeigler S
    J Anim Ecol; 2013 Jan; 82(1):3-5. PubMed ID: 23330960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extended phenotypes: buffers or amplifiers of climate change?
    Woods HA; Pincebourde S; Dillon ME; Terblanche JS
    Trends Ecol Evol; 2021 Oct; 36(10):889-898. PubMed ID: 34147289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional Hypoxia in Insects: Definition, Assessment, and Consequences for Physiology, Ecology, and Evolution.
    Harrison JF; Greenlee KJ; Verberk WCEP
    Annu Rev Entomol; 2018 Jan; 63():303-325. PubMed ID: 28992421
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using plant nutrient landscapes to assess Anthropocene effects on insect herbivores.
    Lenhart PA
    Curr Opin Insect Sci; 2017 Oct; 23():51-58. PubMed ID: 29129282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies.
    Radchuk V; Turlure C; Schtickzelle N
    J Anim Ecol; 2013 Jan; 82(1):275-85. PubMed ID: 22924795
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An ecological and evolutionary perspective on species coexistence under global change.
    Siepielski AM; Hasik AZ; Ousterhout BH
    Curr Opin Insect Sci; 2018 Oct; 29():71-77. PubMed ID: 30551829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Climate change-mediated temperature extremes and insects: From outbreaks to breakdowns.
    Harvey JA; Heinen R; Gols R; Thakur MP
    Glob Chang Biol; 2020 Dec; 26(12):6685-6701. PubMed ID: 33006246
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Avian distributions under climate change: towards improved projections.
    La Sorte FA; Jetz W
    J Exp Biol; 2010 Mar; 213(6):862-9. PubMed ID: 20190111
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Migrate or evolve: options for plant pathogens under climate change.
    Chakraborty S
    Glob Chang Biol; 2013 Jul; 19(7):1985-2000. PubMed ID: 23554235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activity restriction and the mechanistic basis for extinctions under climate warming.
    R Kearney M
    Ecol Lett; 2013 Dec; 16(12):1470-9. PubMed ID: 24118740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.