These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27720174)

  • 1. Towards a chromatographic similarity index to establish localized quantitative structure-retention models for retention prediction: Use of retention factor ratio.
    Tyteca E; Talebi M; Amos R; Park SH; Taraji M; Wen Y; Szucs R; Pohl CA; Dolan JW; Haddad PR
    J Chromatogr A; 2017 Feb; 1486():50-58. PubMed ID: 27720174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a chromatographic similarity index to establish localised Quantitative Structure-Retention Relationships for retention prediction. III Combination of Tanimoto similarity index, logP, and retention factor ratio to identify optimal analyte training sets for ion chromatography.
    Park SH; Haddad PR; Amos RIJ; Talebi M; Szucs R; Pohl CA; Dolan JW
    J Chromatogr A; 2017 Oct; 1520():107-116. PubMed ID: 28916393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography.
    Park SH; Talebi M; Amos RIJ; Tyteca E; Haddad PR; Szucs R; Pohl CA; Dolan JW
    J Chromatogr A; 2017 Nov; 1523():173-182. PubMed ID: 28291517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localised quantitative structure-retention relationship modelling for rapid method development in reversed-phase high performance liquid chromatography.
    Park SH; De Pra M; Haddad PR; Grosse S; Pohl CA; Steiner F
    J Chromatogr A; 2020 Jan; 1609():460508. PubMed ID: 31530383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention prediction in reversed phase high performance liquid chromatography using quantitative structure-retention relationships applied to the Hydrophobic Subtraction Model.
    Wen Y; Talebi M; Amos RIJ; Szucs R; Dolan JW; Pohl CA; Haddad PR
    J Chromatogr A; 2018 Mar; 1541():1-11. PubMed ID: 29454529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of dual-filtering to create training sets leading to improved accuracy in quantitative structure-retention relationships modelling for hydrophilic interaction liquid chromatographic systems.
    Taraji M; Haddad PR; Amos RIJ; Talebi M; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Jul; 1507():53-62. PubMed ID: 28587779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention Index Prediction Using Quantitative Structure-Retention Relationships for Improving Structure Identification in Nontargeted Metabolomics.
    Wen Y; Amos RIJ; Talebi M; Szucs R; Dolan JW; Pohl CA; Haddad PR
    Anal Chem; 2018 Aug; 90(15):9434-9440. PubMed ID: 29952550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures.
    Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():59-67. PubMed ID: 28049585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Method Development in Hydrophilic Interaction Liquid Chromatography for Pharmaceutical Analysis Using a Combination of Quantitative Structure-Retention Relationships and Design of Experiments.
    Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA
    Anal Chem; 2017 Feb; 89(3):1870-1878. PubMed ID: 28208251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention prediction of low molecular weight anions in ion chromatography based on quantitative structure-retention relationships applied to the linear solvent strength model.
    Park SH; Haddad PR; Talebi M; Tyteca E; Amos RI; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():68-75. PubMed ID: 28057331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance comparison of nonlinear and linear regression algorithms coupled with different attribute selection methods for quantitative structure - retention relationships modelling in micellar liquid chromatography.
    Krmar J; Vukićević M; Kovačević A; Protić A; Zečević M; Otašević B
    J Chromatogr A; 2020 Jul; 1623():461146. PubMed ID: 32505269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative structure-(chromatographic) retention relationship models for dissociating compounds.
    Kubik Ł; Wiczling P
    J Pharm Biomed Anal; 2016 Aug; 127():176-83. PubMed ID: 26960942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative structure-retention relationships for organic pollutants in biopartitioning micellar chromatography.
    Xia B; Ma W; Zhang X; Fan B
    Anal Chim Acta; 2007 Aug; 598(1):12-8. PubMed ID: 17693301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A strategy to improve the identification reliability of the chemical constituents by high-resolution mass spectrometry-based isomer structure prediction combined with a quantitative structure retention relationship analysis: Phthalide compounds in Chuanxiong as a test case.
    Zhang Q; Huo M; Zhang Y; Qiao Y; Gao X
    J Chromatogr A; 2018 Jun; 1552():17-28. PubMed ID: 29650478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative structure-retention relationship of selected imidazoline derivatives on α1-acid glycoprotein column.
    Filipic S; Ruzic D; Vucicevic J; Nikolic K; Agbaba D
    J Pharm Biomed Anal; 2016 Aug; 127():101-11. PubMed ID: 26968888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An application of QSRR approach and multiple linear regression method for lipophilicity assessment of flavonoids.
    Zapadka M; Kaczmarek M; Kupcewicz B; Dekowski P; Walkowiak A; Kokotkiewicz A; Łuczkiewicz M; Buciński A
    J Pharm Biomed Anal; 2019 Feb; 164():681-689. PubMed ID: 30476861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic programming based quantitative structure-retention relationships for the prediction of Kovats retention indices.
    Goel P; Bapat S; Vyas R; Tambe A; Tambe SS
    J Chromatogr A; 2015 Nov; 1420():98-109. PubMed ID: 26460075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the performances of quantitative structure-retention relationship models with different sets of molecular descriptors and databases for high-performance liquid chromatography predictions.
    Wang C; Skibic MJ; Higgs RE; Watson IA; Bui H; Wang J; Cintron JM
    J Chromatogr A; 2009 Jun; 1216(25):5030-8. PubMed ID: 19439313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative structure retention relationship (QSRR) modelling for Analytes' retention prediction in LC-HRMS by applying different Machine Learning algorithms and evaluating their performance.
    Liapikos T; Zisi C; Kodra D; Kademoglou K; Diamantidou D; Begou O; Pappa-Louisi A; Theodoridis G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Feb; 1191():123132. PubMed ID: 35093854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative structure-retention relationships models for prediction of high performance liquid chromatography retention time of small molecules: endogenous metabolites and banned compounds.
    Goryński K; Bojko B; Nowaczyk A; Buciński A; Pawliszyn J; Kaliszan R
    Anal Chim Acta; 2013 Oct; 797():13-9. PubMed ID: 24050665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.