These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 27720450)

  • 1. Competitive Disinhibition Mediates Behavioral Choice and Sequences in Drosophila.
    Jovanic T; Schneider-Mizell CM; Shao M; Masson JB; Denisov G; Fetter RD; Mensh BD; Truman JW; Cardona A; Zlatic M
    Cell; 2016 Oct; 167(3):858-870.e19. PubMed ID: 27720450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying neural substrates of competitive interactions and sequence transitions during mechanosensory responses in Drosophila.
    Masson JB; Laurent F; Cardona A; Barré C; Skatchkovsky N; Zlatic M; Jovanic T
    PLoS Genet; 2020 Feb; 16(2):e1008589. PubMed ID: 32059010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomical and genotype-specific mechanosensory responses in Drosophila melanogaster larvae.
    Titlow JS; Rice J; Majeed ZR; Holsopple E; Biecker S; Cooper RL
    Neurosci Res; 2014 Jun; 83():54-63. PubMed ID: 24768745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A disinhibitory mechanism biases Drosophila innate light preference.
    Zhao W; Zhou P; Gong C; Ouyang Z; Wang J; Zheng N; Gong Z
    Nat Commun; 2019 Jan; 10(1):124. PubMed ID: 30631066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal Cohorts of Lineage-Related Neurons Perform Analogous Functions in Distinct Sensorimotor Circuits.
    Wreden CC; Meng JL; Feng W; Chi W; Marshall ZD; Heckscher ES
    Curr Biol; 2017 May; 27(10):1521-1528.e4. PubMed ID: 28502656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanosensory and command contributions to the Drosophila grooming sequence.
    Yoshikawa S; Tang P; Simpson JH
    Curr Biol; 2024 May; 34(10):2066-2076.e3. PubMed ID: 38657610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multilayer circuit architecture for the generation of distinct locomotor behaviors in
    Zarin AA; Mark B; Cardona A; Litwin-Kumar A; Doe CQ
    Elife; 2019 Dec; 8():. PubMed ID: 31868582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nociceptive interneurons control modular motor pathways to promote escape behavior in
    Burgos A; Honjo K; Ohyama T; Qian CS; Shin GJ; Gohl DM; Silies M; Tracey WD; Zlatic M; Cardona A; Grueber WB
    Elife; 2018 Mar; 7():. PubMed ID: 29528286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial Comparisons of Mechanosensory Information Govern the Grooming Sequence in Drosophila.
    Zhang N; Guo L; Simpson JH
    Curr Biol; 2020 Mar; 30(6):988-1001.e4. PubMed ID: 32142695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous activation of parallel sensory pathways promotes a grooming sequence in
    Hampel S; McKellar CE; Simpson JH; Seeds AM
    Elife; 2017 Sep; 6():. PubMed ID: 28887878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From neuron to behavior: Sensory-motor coordination of zebrafish turning behavior.
    Umeda K; Shoji W
    Dev Growth Differ; 2017 Apr; 59(3):107-114. PubMed ID: 28326550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Somatotopic organization among parallel sensory pathways that promote a grooming sequence in
    Eichler K; Hampel S; Alejandro-García A; Calle-Schuler SA; Santana-Cruz A; Kmecova L; Blagburn JM; Hoopfer ED; Seeds AM
    Elife; 2024 Apr; 12():. PubMed ID: 38634460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the subesophageal zone in sensorimotor control of orientation in Drosophila larva.
    Tastekin I; Riedl J; Schilling-Kurz V; Gomez-Marin A; Truman JW; Louis M
    Curr Biol; 2015 Jun; 25(11):1448-60. PubMed ID: 25959970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multilevel multimodal circuit enhances action selection in Drosophila.
    Ohyama T; Schneider-Mizell CM; Fetter RD; Aleman JV; Franconville R; Rivera-Alba M; Mensh BD; Branson KM; Simpson JH; Truman JW; Cardona A; Zlatic M
    Nature; 2015 Apr; 520(7549):633-9. PubMed ID: 25896325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A subset of interneurons required for Drosophila larval locomotion.
    Yoshikawa S; Long H; Thomas JB
    Mol Cell Neurosci; 2016 Jan; 70():22-9. PubMed ID: 26621406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potency of transgenic effectors for neurogenetic manipulation in Drosophila larvae.
    Pauls D; von Essen A; Lyutova R; van Giesen L; Rosner R; Wegener C; Sprecher SG
    Genetics; 2015 Jan; 199(1):25-37. PubMed ID: 25359929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of larval motor circuits in Drosophila.
    Kohsaka H; Okusawa S; Itakura Y; Fushiki A; Nose A
    Dev Growth Differ; 2012 Apr; 54(3):408-19. PubMed ID: 22524610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensorimotor decision making in the zebrafish tectum.
    Barker AJ; Baier H
    Curr Biol; 2015 Nov; 25(21):2804-2814. PubMed ID: 26592341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning.
    Vogelstein JT; Park Y; Ohyama T; Kerr RA; Truman JW; Priebe CE; Zlatic M
    Science; 2014 Apr; 344(6182):386-92. PubMed ID: 24674869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A connectome of the
    Hulse BK; Haberkern H; Franconville R; Turner-Evans D; Takemura SY; Wolff T; Noorman M; Dreher M; Dan C; Parekh R; Hermundstad AM; Rubin GM; Jayaraman V
    Elife; 2021 Oct; 10():. PubMed ID: 34696823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.