BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 27720488)

  • 21. The impact of learning on perceptual decisions and its implication for speed-accuracy tradeoffs.
    Mendonça AG; Drugowitsch J; Vicente MI; DeWitt EEJ; Pouget A; Mainen ZF
    Nat Commun; 2020 Jun; 11(1):2757. PubMed ID: 32488065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making.
    Schönberg T; Daw ND; Joel D; O'Doherty JP
    J Neurosci; 2007 Nov; 27(47):12860-7. PubMed ID: 18032658
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Model-based spatial navigation in the hippocampus-ventral striatum circuit: A computational analysis.
    Stoianov IP; Pennartz CMA; Lansink CS; Pezzulo G
    PLoS Comput Biol; 2018 Sep; 14(9):e1006316. PubMed ID: 30222746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Signed Reward Prediction Errors in the Ventral Striatum Drive Episodic Memory.
    Calderon CB; De Loof E; Ergo K; Snoeck A; Boehler CN; Verguts T
    J Neurosci; 2021 Feb; 41(8):1716-1726. PubMed ID: 33334870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disrupted reinforcement learning during post-error slowing in ADHD.
    Chevrier A; Bhaijiwala M; Lipszyc J; Cheyne D; Graham S; Schachar R
    PLoS One; 2019; 14(2):e0206780. PubMed ID: 30785885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple associative structures created by reinforcement and incidental statistical learning mechanisms.
    Klein-Flügge MC; Wittmann MK; Shpektor A; Jensen DEA; Rushworth MFS
    Nat Commun; 2019 Oct; 10(1):4835. PubMed ID: 31645545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reward-Guided Learning with and without Causal Attribution.
    Jocham G; Brodersen KH; Constantinescu AO; Kahn MC; Ianni AM; Walton ME; Rushworth MF; Behrens TE
    Neuron; 2016 Apr; 90(1):177-90. PubMed ID: 26971947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of Instrumental and Goal-Directed Learning Modulates Prediction Error Representations in the Ventral Striatum.
    Guo R; Böhmer W; Hebart M; Chien S; Sommer T; Obermayer K; Gläscher J
    J Neurosci; 2016 Dec; 36(50):12650-12660. PubMed ID: 27974615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beta Oscillations in Monkey Striatum Encode Reward Prediction Error Signals.
    Basanisi R; Marche K; Combrisson E; Apicella P; Brovelli A
    J Neurosci; 2023 May; 43(18):3339-3352. PubMed ID: 37015808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The neurocomputational bases of explore-exploit decision-making.
    Hogeveen J; Mullins TS; Romero JD; Eversole E; Rogge-Obando K; Mayer AR; Costa VD
    Neuron; 2022 Jun; 110(11):1869-1879.e5. PubMed ID: 35390278
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impaired flexible reward learning in ADHD patients is associated with blunted reinforcement sensitivity and neural signals in ventral striatum and parietal cortex.
    Aster HC; Waltmann M; Busch A; Romanos M; Gamer M; Maria van Noort B; Beck A; Kappel V; Deserno L
    Neuroimage Clin; 2024; 42():103588. PubMed ID: 38471434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Primate Amygdala Neurons Simulate Decision Processes of Social Partners.
    Grabenhorst F; Báez-Mendoza R; Genest W; Deco G; Schultz W
    Cell; 2019 May; 177(4):986-998.e15. PubMed ID: 30982599
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Entropy-based metrics for predicting choice behavior based on local response to reward.
    Trepka E; Spitmaan M; Bari BA; Costa VD; Cohen JY; Soltani A
    Nat Commun; 2021 Nov; 12(1):6567. PubMed ID: 34772943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Congruence of Inherent and Acquired Values Facilitates Reward-Based Decision-Making.
    Chien S; Wiehler A; Spezio M; Gläscher J
    J Neurosci; 2016 May; 36(18):5003-12. PubMed ID: 27147653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amygdala tractography predicts functional connectivity and learning during feedback-guided decision-making.
    Cohen MX; Elger CE; Weber B
    Neuroimage; 2008 Feb; 39(3):1396-407. PubMed ID: 17997112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reversal learning and dopamine: a bayesian perspective.
    Costa VD; Tran VL; Turchi J; Averbeck BB
    J Neurosci; 2015 Feb; 35(6):2407-16. PubMed ID: 25673835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prefrontal Cortex Predicts State Switches during Reversal Learning.
    Bartolo R; Averbeck BB
    Neuron; 2020 Jun; 106(6):1044-1054.e4. PubMed ID: 32315603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nutrient-Sensitive Reinforcement Learning in Monkeys.
    Huang FY; Grabenhorst F
    J Neurosci; 2023 Mar; 43(10):1714-1730. PubMed ID: 36669886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decomposing the effects of context valence and feedback information on speed and accuracy during reinforcement learning: a meta-analytical approach using diffusion decision modeling.
    Fontanesi L; Palminteri S; Lebreton M
    Cogn Affect Behav Neurosci; 2019 Jun; 19(3):490-502. PubMed ID: 31175616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.