BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 27720743)

  • 1. Cognitive correlates of spatial navigation: Associations between executive functioning and the virtual Morris Water Task.
    Korthauer LE; Nowak NT; Frahmand M; Driscoll I
    Behav Brain Res; 2017 Jan; 317():470-478. PubMed ID: 27720743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Virtual Floor Maze Test - Effects of Distal Visual Cues and Correlations With Executive Function in Healthy Adults.
    Martelli D; Prado A; Xia B; Verghese J; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2229-2236. PubMed ID: 31478863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sex differences in virtual navigation influenced by scale and navigation experience.
    Padilla LM; Creem-Regehr SH; Stefanucci JK; Cashdan EA
    Psychon Bull Rev; 2017 Apr; 24(2):582-590. PubMed ID: 27714666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impairments in precision, rather than spatial strategy, characterize performance on the virtual Morris Water Maze: A case study.
    Kolarik BS; Shahlaie K; Hassan A; Borders AA; Kaufman KC; Gurkoff G; Yonelinas AP; Ekstrom AD
    Neuropsychologia; 2016 Jan; 80():90-101. PubMed ID: 26593960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial navigation from same and different directions: The role of executive functions, memory and attention in adults with autism spectrum disorder.
    Ring M; Gaigg SB; de Condappa O; Wiener JM; Bowler DM
    Autism Res; 2018 May; 11(5):798-810. PubMed ID: 29405653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sex differences in human virtual water maze performance: novel measures reveal the relative contribution of directional responding and spatial knowledge.
    Woolley DG; Vermaercke B; Op de Beeck H; Wagemans J; Gantois I; D'Hooge R; Swinnen SP; Wenderoth N
    Behav Brain Res; 2010 Apr; 208(2):408-14. PubMed ID: 20035800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlates of virtual navigation performance in older adults.
    Korthauer LE; Nowak NT; Moffat SD; An Y; Rowland LM; Barker PB; Resnick SM; Driscoll I
    Neurobiol Aging; 2016 Mar; 39():118-27. PubMed ID: 26923408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Path Complexity in Virtual Water Maze Navigation: Differential Associations with Age, Sex, and Regional Brain Volume.
    Daugherty AM; Yuan P; Dahle CL; Bender AR; Yang Y; Raz N
    Cereb Cortex; 2015 Sep; 25(9):3122-31. PubMed ID: 24860019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual navigation in humans: the impact of age, sex, and hormones on place learning.
    Driscoll I; Hamilton DA; Yeo RA; Brooks WM; Sutherland RJ
    Horm Behav; 2005 Mar; 47(3):326-35. PubMed ID: 15708762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The functional role of human right hippocampal/parahippocampal theta rhythm in environmental encoding during virtual spatial navigation.
    Pu Y; Cornwell BR; Cheyne D; Johnson BW
    Hum Brain Mapp; 2017 Mar; 38(3):1347-1361. PubMed ID: 27813230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze.
    van Gerven DJH; Ferguson T; Skelton RW
    Neurobiol Learn Mem; 2016 Jul; 132():29-39. PubMed ID: 27174311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of sex, testosterone, and androgen receptor CAG repeat number to virtual Morris water maze performance.
    Nowak NT; Diamond MP; Land SJ; Moffat SD
    Psychoneuroendocrinology; 2014 Mar; 41():13-22. PubMed ID: 24495604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex differences and correlations in a virtual Morris water task, a virtual radial arm maze, and mental rotation.
    Astur RS; Tropp J; Sava S; Constable RT; Markus EJ
    Behav Brain Res; 2004 May; 151(1-2):103-15. PubMed ID: 15084426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age and active navigation effects on episodic memory: A virtual reality study.
    Sauzéon H; N'Kaoua B; Arvind Pala P; Taillade M; Guitton P
    Br J Psychol; 2016 Feb; 107(1):72-94. PubMed ID: 26756717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introducing a new age-and-cognition-sensitive measurement for assessing spatial orientation using a landmark-less virtual reality navigational task.
    Ranjbar Pouya O; Byagowi A; Kelly DM; Moussavi Z
    Q J Exp Psychol (Hove); 2017 Jul; 70(7):1406-1419. PubMed ID: 27156658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human sex differences in solving a virtual navigation problem.
    Astur RS; Purton AJ; Zaniewski MJ; Cimadevilla J; Markus EJ
    Behav Brain Res; 2016 Jul; 308():236-43. PubMed ID: 27108050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial Navigation in the Elderly with Alzheimer's Disease: A Cross-Sectional Study.
    Zanco M; Plácido J; Marinho V; Ferreira JV; de Oliveira F; Monteiro-Junior R; Barca M; Engedal K; Laks J; Deslandes A
    J Alzheimers Dis; 2018; 66(4):1683-1694. PubMed ID: 30507580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switching from reaching to navigation: differential cognitive strategies for spatial memory in children and adults.
    Belmonti V; Cioni G; Berthoz A
    Dev Sci; 2015 Jul; 18(4):569-86. PubMed ID: 25443319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Search strategy selection in the Morris water maze indicates allocentric map formation during learning that underpins spatial memory formation.
    Rogers J; Churilov L; Hannan AJ; Renoir T
    Neurobiol Learn Mem; 2017 Mar; 139():37-49. PubMed ID: 27988312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of age on virtual environment place navigation and allocentric cognitive mapping.
    Moffat SD; Resnick SM
    Behav Neurosci; 2002 Oct; 116(5):851-9. PubMed ID: 12369805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.