BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 27720844)

  • 1. Arogenate Dehydratase Isoforms Differentially Regulate Anthocyanin Biosynthesis in Arabidopsis thaliana.
    Chen Q; Man C; Li D; Tan H; Xie Y; Huang J
    Mol Plant; 2016 Dec; 9(12):1609-1619. PubMed ID: 27720844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenylalanine biosynthesis in Arabidopsis thaliana. Identification and characterization of arogenate dehydratases.
    Cho MH; Corea OR; Yang H; Bedgar DL; Laskar DD; Anterola AM; Moog-Anterola FA; Hood RL; Kohalmi SE; Bernards MA; Kang C; Davin LB; Lewis NG
    J Biol Chem; 2007 Oct; 282(42):30827-35. PubMed ID: 17726025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Arogenate Dehydratase ADT2 is Essential for Seed Development in Arabidopsis.
    El-Azaz J; Cánovas FM; Ávila C; de la Torre F
    Plant Cell Physiol; 2018 Dec; 59(12):2409-2420. PubMed ID: 30289532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular localization of Arabidopsis arogenate dehydratases suggests novel and non-enzymatic roles.
    Bross CD; Howes TR; Abolhassani Rad S; Kljakic O; Kohalmi SE
    J Exp Bot; 2017 Mar; 68(7):1425-1440. PubMed ID: 28338876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arogenate dehydratases can modulate the levels of phenylacetic acid in Arabidopsis.
    Aoi Y; Oikawa A; Sasaki R; Huang J; Hayashi KI; Kasahara H
    Biochem Biophys Res Commun; 2020 Mar; 524(1):83-88. PubMed ID: 31980164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNAi suppression of Arogenate Dehydratase1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals.
    Maeda H; Shasany AK; Schnepp J; Orlova I; Taguchi G; Cooper BR; Rhodes D; Pichersky E; Dudareva N
    Plant Cell; 2010 Mar; 22(3):832-49. PubMed ID: 20215586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementation of the pha2 yeast mutant suggests functional differences for arogenate dehydratases from Arabidopsis thaliana.
    Bross CD; Corea OR; Kaldis A; Menassa R; Bernards MA; Kohalmi SE
    Plant Physiol Biochem; 2011 Aug; 49(8):882-90. PubMed ID: 21388819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The arogenate dehydratase gene family: towards understanding differential regulation of carbon flux through phenylalanine into primary versus secondary metabolic pathways.
    Corea OR; Bedgar DL; Davin LB; Lewis NG
    Phytochemistry; 2012 Oct; 82():22-37. PubMed ID: 22818526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced Arogenate Dehydratase Expression: Ramifications for Photosynthesis and Metabolism.
    Höhner R; Marques JV; Ito T; Amakura Y; Budgeon AD; Weitz K; Hixson KK; Davin LB; Kirchhoff H; Lewis NG
    Plant Physiol; 2018 May; 177(1):115-131. PubMed ID: 29523714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drastic anthocyanin increase in response to PAP1 overexpression in fls1 knockout mutant confers enhanced osmotic stress tolerance in Arabidopsis thaliana.
    Lee WJ; Jeong CY; Kwon J; Van Kien V; Lee D; Hong SW; Lee H
    Plant Cell Rep; 2016 Nov; 35(11):2369-2379. PubMed ID: 27562381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GA-DELLA pathway is involved in regulation of nitrogen deficiency-induced anthocyanin accumulation.
    Zhang Y; Liu Z; Liu J; Lin S; Wang J; Lin W; Xu W
    Plant Cell Rep; 2017 Apr; 36(4):557-569. PubMed ID: 28275852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pleiotropic physiological consequences of feedback-insensitive phenylalanine biosynthesis in Arabidopsis thaliana.
    Huang T; Tohge T; Lytovchenko A; Fernie AR; Jander G
    Plant J; 2010 Sep; 63(5):823-35. PubMed ID: 20598094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitogen-activated protein kinase kinase 6 negatively regulates anthocyanin induction in Arabidopsis.
    Wersch RV; Gao F; Zhang Y
    Plant Signal Behav; 2018; 13(10):e1526000. PubMed ID: 30273518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue- and isoform-specific phytochrome regulation of light-dependent anthocyanin accumulation in Arabidopsis thaliana.
    Warnasooriya SN; Porter KJ; Montgomery BL
    Plant Signal Behav; 2011 May; 6(5):624-31. PubMed ID: 21455024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis.
    Zhu HF; Fitzsimmons K; Khandelwal A; Kranz RG
    Mol Plant; 2009 Jul; 2(4):790-802. PubMed ID: 19825656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moonlighting proteins: putting the spotlight on enzymes.
    Abolhassani Rad S; Clayton EJ; Cornelius EJ; Howes TR; Kohalmi SE
    Plant Signal Behav; 2018; 13(10):e1517075. PubMed ID: 30252596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arabidopsis ROOT HAIR DEFECTIVE3 is involved in nitrogen starvation-induced anthocyanin accumulation.
    Wang J; Wang Y; Yang J; Ma C; Zhang Y; Ge T; Qi Z; Kang Y
    J Integr Plant Biol; 2015 Aug; 57(8):708-21. PubMed ID: 25494721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transcription factor AtGLK1 acts upstream of MYBL2 to genetically regulate sucrose-induced anthocyanin biosynthesis in Arabidopsis.
    Zhao D; Zheng Y; Yang L; Yao Z; Cheng J; Zhang F; Jiang H; Liu D
    BMC Plant Biol; 2021 May; 21(1):242. PubMed ID: 34049482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iTRAQ-based analysis of the Arabidopsis proteome reveals insights into the potential mechanisms of anthocyanin accumulation regulation in response to phosphate deficiency.
    Wang ZQ; Zhou X; Dong L; Guo J; Chen Y; Zhang Y; Wu L; Xu M
    J Proteomics; 2018 Jul; 184():39-53. PubMed ID: 29920325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repression of MYBL2 by Both microRNA858a and HY5 Leads to the Activation of Anthocyanin Biosynthetic Pathway in Arabidopsis.
    Wang Y; Wang Y; Song Z; Zhang H
    Mol Plant; 2016 Oct; 9(10):1395-1405. PubMed ID: 27450422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.