BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 27720861)

  • 1. A Burkholderia sacchari cell factory: production of poly-3-hydroxybutyrate, xylitol and xylonic acid from xylose-rich sugar mixtures.
    Raposo RS; de Almeida MC; de Oliveira MD; da Fonseca MM; Cesário MT
    N Biotechnol; 2017 Jan; 34():12-22. PubMed ID: 27720861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Burkholderia sacchari using wheat straw hydrolysates and gamma-butyrolactone.
    Cesário MT; Raposo RS; M D de Almeida MC; van Keulen F; Ferreira BS; Telo JP; R da Fonseca MM
    Int J Biol Macromol; 2014 Nov; 71():59-67. PubMed ID: 24811901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates.
    Cesário MT; Raposo RS; de Almeida MC; van Keulen F; Ferreira BS; da Fonseca MM
    N Biotechnol; 2014 Jan; 31(1):104-13. PubMed ID: 24157713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. xylA and xylB overexpression as a successful strategy for improving xylose utilization and poly-3-hydroxybutyrate production in Burkholderia sacchari.
    Guamán LP; Oliveira-Filho ER; Barba-Ostria C; Gomez JGC; Taciro MK; da Silva LF
    J Ind Microbiol Biotechnol; 2018 Mar; 45(3):165-173. PubMed ID: 29349569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly-3-hydroxybutyrate (P3HB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate.
    Silva LF; Taciro MK; Michelin Ramos ME; Carter JM; Pradella JG; Gomez JG
    J Ind Microbiol Biotechnol; 2004 Jul; 31(6):245-54. PubMed ID: 15221664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High yield production of D-xylonic acid from D-xylose using engineered Escherichia coli.
    Liu H; Valdehuesa KN; Nisola GM; Ramos KR; Chung WJ
    Bioresour Technol; 2012 Jul; 115():244-8. PubMed ID: 21917451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering xylose metabolism for production of polyhydroxybutyrate in the non-model bacterium Burkholderia sacchari.
    Guamán LP; Barba-Ostria C; Zhang F; Oliveira-Filho ER; Gomez JGC; Silva LF
    Microb Cell Fact; 2018 May; 17(1):74. PubMed ID: 29764418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Burkholderia sacchari DSM 17165: A source of compositionally-tunable block-copolymeric short-chain poly(hydroxyalkanoates) from xylose and levulinic acid.
    Ashby RD; Solaiman DKY; Nuñez A; Strahan GD; Johnston DB
    Bioresour Technol; 2018 Apr; 253():333-342. PubMed ID: 29413997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient production of polyhydroxybutyrate using lignocellulosic biomass derived from oil palm trunks by the inhibitor-tolerant strain Burkholderia ambifaria E5-3.
    Arai T; Aikawa S; Sudesh K; Arai W; Mohammad Rawi NF; Leh CPP; Mohamad Kassim MH; Tay GS; Kosugi A
    World J Microbiol Biotechnol; 2024 Jun; 40(8):242. PubMed ID: 38869634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-cell density culture of poly(lactate-co-3-hydroxybutyrate)-producing Escherichia coli by using glucose/xylose-switching fed-batch jar fermentation.
    Hori C; Yamazaki T; Ribordy G; Takisawa K; Matsumoto K; Ooi T; Zinn M; Taguchi S
    J Biosci Bioeng; 2019 Jun; 127(6):721-725. PubMed ID: 30573386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved ethanol and reduced xylitol production from glucose and xylose mixtures by the mutant strain of Candida shehatae ATCC 22984.
    Li Y; Park JY; Shiroma R; Ike M; Tokuyasu K
    Appl Biochem Biotechnol; 2012 Apr; 166(7):1781-90. PubMed ID: 22328261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PHB biosynthesis in catabolite repression mutant of Burkholderia sacchari.
    Lopes MS; Gosset G; Rocha RC; Gomez JG; Ferreira da Silva L
    Curr Microbiol; 2011 Oct; 63(4):319-26. PubMed ID: 21761218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feeding strategies for tuning poly (3-hydroxybutyrate-co-4-hydroxybutyrate) monomeric composition and productivity using Burkholderia sacchari.
    Raposo RS; de Almeida MCMD; da Fonseca MMR; Cesário MT
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):825-833. PubMed ID: 28735003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.
    Kim JH; Han KC; Koh YH; Ryu YW; Seo JH
    J Ind Microbiol Biotechnol; 2002 Jul; 29(1):16-9. PubMed ID: 12080422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating Nutrient Limitation Role on Improvement of Growth and Poly(3-Hydroxybutyrate) Accumulation by
    Oliveira-Filho ER; Silva JGP; de Macedo MA; Taciro MK; Gomez JGC; Silva LF
    Front Bioeng Biotechnol; 2019; 7():416. PubMed ID: 31970153
    [No Abstract]   [Full Text] [Related]  

  • 17. Release of glucose repression on xylose utilization in Kluyveromyces marxianus to enhance glucose-xylose co-utilization and xylitol production from corncob hydrolysate.
    Hua Y; Wang J; Zhu Y; Zhang B; Kong X; Li W; Wang D; Hong J
    Microb Cell Fact; 2019 Feb; 18(1):24. PubMed ID: 30709398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating glucose and xylose as cosubstrates for lipid accumulation and γ-linolenic acid biosynthesis of Thamnidium elegans.
    Zikou E; Chatzifragkou A; Koutinas AA; Papanikolaou S
    J Appl Microbiol; 2013 Apr; 114(4):1020-32. PubMed ID: 23279437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of xylonic acid by Klebsiella pneumoniae.
    Wang C; Wei D; Zhang Z; Wang D; Shi J; Kim CH; Jiang B; Han Z; Hao J
    Appl Microbiol Biotechnol; 2016 Dec; 100(23):10055-10063. PubMed ID: 27629123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Furfural and glucose can enhance conversion of xylose to xylitol by Candida magnoliae TISTR 5663.
    Wannawilai S; Lee WC; Chisti Y; Sirisansaneeyakul S
    J Biotechnol; 2017 Jan; 241():147-157. PubMed ID: 27899337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.