These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 27720988)

  • 1. Salt-inducible Protein Splicing in cis and trans by Inteins from Extremely Halophilic Archaea as a Novel Protein-Engineering Tool.
    Ciragan A; Aranko AS; Tascon I; Iwaï H
    J Mol Biol; 2016 Nov; 428(23):4573-4588. PubMed ID: 27720988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering artificially split inteins for applications in protein chemistry: biochemical characterization of the split Ssp DnaB intein and comparison to the split Sce VMA intein.
    Brenzel S; Kurpiers T; Mootz HD
    Biochemistry; 2006 Feb; 45(6):1571-8. PubMed ID: 16460004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The NMR structure of the engineered halophilic DnaE intein for segmental isotopic labeling using conditional protein splicing.
    Heikkinen HA; Aranko AS; Iwaï H
    J Magn Reson; 2022 May; 338():107195. PubMed ID: 35398651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based engineering and comparison of novel split inteins for protein ligation.
    Aranko AS; Oeemig JS; Zhou D; Kajander T; Wlodawer A; Iwaï H
    Mol Biosyst; 2014 May; 10(5):1023-34. PubMed ID: 24574026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein trans-splicing and its use in structural biology: opportunities and limitations.
    Volkmann G; Iwaï H
    Mol Biosyst; 2010 Nov; 6(11):2110-21. PubMed ID: 20820635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for protein trans-splicing by a bacterial intein-like domain--protein ligation without nucleophilic side chains.
    Aranko AS; Oeemig JS; Iwaï H
    FEBS J; 2013 Jul; 280(14):3256-69. PubMed ID: 23621571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Split-inteins and their bioapplications.
    Li Y
    Biotechnol Lett; 2015 Nov; 37(11):2121-37. PubMed ID: 26153348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of the naturally split gp41-1 intein guides the engineering of orthogonal split inteins from cis-splicing inteins.
    Beyer HM; Mikula KM; Li M; Wlodawer A; Iwaï H
    FEBS J; 2020 May; 287(9):1886-1898. PubMed ID: 31665813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins.
    Aranko AS; Züger S; Buchinger E; Iwaï H
    PLoS One; 2009; 4(4):e5185. PubMed ID: 19365564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semisynthesis of proteins using split inteins.
    Ludwig C; Schwarzer D; Zettler J; Garbe D; Janning P; Czeslik C; Mootz HD
    Methods Enzymol; 2009; 462():77-96. PubMed ID: 19632470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmental Isotope Labeling of Insoluble Proteins for Solid-State NMR by Protein Trans-Splicing.
    Schubeis T; Nagaraj M; Ritter C
    Methods Mol Biol; 2017; 1495():147-160. PubMed ID: 27714615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intein applications: from protein purification and labeling to metabolic control methods.
    Wood DW; Camarero JA
    J Biol Chem; 2014 May; 289(21):14512-9. PubMed ID: 24700459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient and more general cis- and trans-splicing inteins through sequential directed evolution.
    Appleby-Tagoe JH; Thiel IV; Wang Y; Wang Y; Mootz HD; Liu XQ
    J Biol Chem; 2011 Sep; 286(39):34440-7. PubMed ID: 21832069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved protein splicing using embedded split inteins.
    Gramespacher JA; Stevens AJ; Thompson RE; Muir TW
    Protein Sci; 2018 Mar; 27(3):614-619. PubMed ID: 29226478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR and crystal structures of the Pyrococcus horikoshii RadA intein guide a strategy for engineering a highly efficient and promiscuous intein.
    Oeemig JS; Zhou D; Kajander T; Wlodawer A; Iwaï H
    J Mol Biol; 2012 Aug; 421(1):85-99. PubMed ID: 22560994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative nucleophilic residues in intein catalysis of protein splicing.
    Qi X; Wang J; Meng Q; Liu XQ
    Protein Pept Lett; 2011 Dec; 18(12):1226-32. PubMed ID: 21707520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic two-piece and three-piece split inteins for protein trans-splicing.
    Sun W; Yang J; Liu XQ
    J Biol Chem; 2004 Aug; 279(34):35281-6. PubMed ID: 15194682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein trans-splicing on an M13 bacteriophage: towards directed evolution of a semisynthetic split intein by phage display.
    Garbe D; Thiel IV; Mootz HD
    J Pept Sci; 2010 Oct; 16(10):575-81. PubMed ID: 20862725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intein lacking conserved C-terminal motif G retains controllable N-cleavage activity.
    Volkmann G; Liu XQ
    FEBS J; 2011 Sep; 278(18):3431-46. PubMed ID: 21787376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A promiscuous split intein with expanded protein engineering applications.
    Stevens AJ; Sekar G; Shah NH; Mostafavi AZ; Cowburn D; Muir TW
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):8538-8543. PubMed ID: 28739907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.