These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 27721016)

  • 1. The botrydial biosynthetic gene cluster of Botrytis cinerea displays a bipartite genomic structure and is positively regulated by the putative Zn(II)
    Porquier A; Morgant G; Moraga J; Dalmais B; Luyten I; Simon A; Pradier JM; Amselem J; Collado IG; Viaud M
    Fungal Genet Biol; 2016 Nov; 96():33-46. PubMed ID: 27721016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trichothecenes and aspinolides produced by Trichoderma arundinaceum regulate expression of Botrytis cinerea genes involved in virulence and growth.
    Malmierca MG; Izquierdo-Bueno I; McCormick SP; Cardoza RE; Alexander NJ; Barua J; Lindo L; Casquero PA; Collado IG; Monte E; Gutiérrez S
    Environ Microbiol; 2016 Nov; 18(11):3991-4004. PubMed ID: 27312485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial.
    Dalmais B; Schumacher J; Moraga J; LE Pêcheur P; Tudzynski B; Collado IG; Viaud M
    Mol Plant Pathol; 2011 Aug; 12(6):564-79. PubMed ID: 21722295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Botcinic acid biosynthesis in Botrytis cinerea relies on a subtelomeric gene cluster surrounded by relics of transposons and is regulated by the Zn
    Porquier A; Moraga J; Morgant G; Dalmais B; Simon A; Sghyer H; Collado IG; Viaud M
    Curr Genet; 2019 Aug; 65(4):965-980. PubMed ID: 30848345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor.
    Siewers V; Viaud M; Jimenez-Teja D; Collado IG; Gronover CS; Pradier JM; Tudzynski B; Tudzynski P
    Mol Plant Microbe Interact; 2005 Jun; 18(6):602-12. PubMed ID: 15986930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening of a Botrytis cinerea one-hybrid library reveals a Cys2His2 transcription factor involved in the regulation of secondary metabolism gene clusters.
    Simon A; Dalmais B; Morgant G; Viaud M
    Fungal Genet Biol; 2013 Mar; 52():9-19. PubMed ID: 23396263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic Effects and Inhibition of Botrydial Biosynthesis Induced by Different Plant-Based Elicitors in Botrytis cinerea.
    Liñeiro E; Macias-Sánchez AJ; Espinazo M; Cantoral JM; Moraga J; Collado IG; Fernández-Acero FJ
    Curr Microbiol; 2018 Apr; 75(4):431-440. PubMed ID: 29147762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Botrydial and botcinins produced by Botrytis cinerea regulate the expression of Trichoderma arundinaceum genes involved in trichothecene biosynthesis.
    Malmierca MG; Izquierdo-Bueno I; Mccormick SP; Cardoza RE; Alexander NJ; Moraga J; Gomes EV; Proctor RH; Collado IG; Monte E; Gutiérrez S
    Mol Plant Pathol; 2016 Sep; 17(7):1017-31. PubMed ID: 26575202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic and Molecular Basis of Botrydial Biosynthesis: Connecting Cytochrome P450-Encoding Genes to Biosynthetic Intermediates.
    Moraga J; Dalmais B; Izquierdo-Bueno I; Aleu J; Hanson JR; Hernández-Galán R; Viaud M; Collado IG
    ACS Chem Biol; 2016 Oct; 11(10):2838-2846. PubMed ID: 27529428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription Factor PdeR Is Involved in Fungal Development, Metabolic Change, and Pathogenesis of Gray Mold
    Han JW; Kim DY; Lee YJ; Choi YR; Kim B; Choi GJ; Han SW; Kim H
    J Agric Food Chem; 2020 Aug; 68(34):9171-9179. PubMed ID: 32786857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cys
    Wang Y; Zhou J; Zhong J; Luo D; Li Z; Yang J; Shu D; Tan H
    Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 29959241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Galpha subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase co-ordinately regulate gene expression in the grey mould fungus Botrytis cinerea.
    Schumacher J; Viaud M; Simon A; Tudzynski B
    Mol Microbiol; 2008 Mar; 67(5):1027-50. PubMed ID: 18208491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Botrydial confers Botrytis cinerea the ability to antagonize soil and phyllospheric bacteria.
    Vignatti P; Gonzalez ME; Jofré EC; Bolívar-Anillo HJ; Moraga J; Viaud M; Collado IG; Pieckenstain FL
    Fungal Biol; 2020 Jan; 124(1):54-64. PubMed ID: 31892377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling.
    Rossi FR; Gárriz A; Marina M; Romero FM; Gonzalez ME; Collado IG; Pieckenstain FL
    Mol Plant Microbe Interact; 2011 Aug; 24(8):888-96. PubMed ID: 21751851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemically Induced Cryptic Sesquiterpenoids and Expression of Sesquiterpene Cyclases in Botrytis cinerea Revealed New Sporogenic (+)-4-Epieremophil-9-en-11-ols.
    Pinedo C; Moraga J; Barua J; González-Rodríguez VE; Aleu J; Durán-Patrón R; Macías-Sánchez AJ; Hanson JR; Viaud M; Hernández-Galán R; Garrido C; Collado IG
    ACS Chem Biol; 2016 May; 11(5):1391-400. PubMed ID: 26900713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A functional bikaverin biosynthesis gene cluster in rare strains of Botrytis cinerea is positively controlled by VELVET.
    Schumacher J; Gautier A; Morgant G; Studt L; Ducrot PH; Le Pêcheur P; Azeddine S; Fillinger S; Leroux P; Tudzynski B; Viaud M
    PLoS One; 2013; 8(1):e53729. PubMed ID: 23308280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel aspinolide production by Trichoderma arundinaceum with a potential role in Botrytis cinerea antagonistic activity and plant defence priming.
    Malmierca MG; Barua J; McCormick SP; Izquierdo-Bueno I; Cardoza RE; Alexander NJ; Hermosa R; Collado IG; Monte E; Gutiérrez S
    Environ Microbiol; 2015 Apr; 17(4):1103-18. PubMed ID: 24889745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sesquiterpene synthase from the botrydial biosynthetic gene cluster of the phytopathogen Botrytis cinerea.
    Pinedo C; Wang CM; Pradier JM; Dalmais B; Choquer M; Le Pêcheur P; Morgant G; Collado IG; Cane DE; Viaud M
    ACS Chem Biol; 2008 Dec; 3(12):791-801. PubMed ID: 19035644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Botrytis cinerea Reg1 protein, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites.
    Michielse CB; Becker M; Heller J; Moraga J; Collado IG; Tudzynski P
    Mol Plant Microbe Interact; 2011 Sep; 24(9):1074-85. PubMed ID: 21635139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The GATA transcription factor BcWCL2 regulates citric acid secretion to maintain redox homeostasis and full virulence in
    Ren W; Qian C; Ren D; Cai Y; Deng Z; Zhang N; Wang C; Wang Y; Zhu P; Xu L
    mBio; 2024 Jul; 15(7):e0013324. PubMed ID: 38814088
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.