BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 27721166)

  • 1. Interfacial properties, thin film stability and foam stability of casein micelle dispersions.
    Chen M; Sala G; Meinders MB; van Valenberg HJ; van der Linden E; Sagis LM
    Colloids Surf B Biointerfaces; 2017 Jan; 149():56-63. PubMed ID: 27721166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foam and thin films of hydrophilic silica particles modified by β-casein.
    Chen M; Sala G; van Valenberg HJF; van Hooijdonk ACM; van der Linden E; Meinders MBJ
    J Colloid Interface Sci; 2018 Mar; 513():357-366. PubMed ID: 29169025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spreading of monoglycerides onto beta-casein adsorbed film. Structural and dilatational characteristics.
    Rodríguez Patino JM; Cejudo Fernández M; Rodríguez Niño MR; Carrera Sánchez C
    J Agric Food Chem; 2006 May; 54(10):3723-32. PubMed ID: 19127751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure, miscibility, and rheological characteristics of beta-casein-monoglyceride mixed films at the air-water interface.
    Rodríguez Patino JM; Rodríguez Niño MR; Carrera Sánchez C
    J Agric Food Chem; 2003 Jan; 51(1):112-9. PubMed ID: 12502394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear and dilatational relaxation mechanisms of globular and flexible proteins at the hexadecane/water interface.
    Freer EM; Yim KS; Fuller GG; Radke CJ
    Langmuir; 2004 Nov; 20(23):10159-67. PubMed ID: 15518508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural-rheological characteristics of Chaplin E peptide at the air/water interface; a comparison with β-lactoglobulin and β-casein.
    Dokouhaki M; Prime EL; Qiao GG; Kasapis S; Day L; Gras SL
    Int J Biol Macromol; 2020 Feb; 144():742-750. PubMed ID: 31837361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-induced changes to the molecular conformation and aggregate structure of beta-casein at the air-water interface.
    Vessely CR; Carpenter JF; Schwartz DK
    Biomacromolecules; 2005; 6(6):3334-44. PubMed ID: 16283763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological changes in adsorbed protein films at the oil-water interface subjected to compression, expansion, and heat processing.
    Xu R; Dickinson E; Murray BS
    Langmuir; 2008 Mar; 24(5):1979-88. PubMed ID: 18211106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed layers of sodium caseinate + dextran sulfate: influence of order of addition to oil-water interface.
    Jourdain LS; Schmitt C; Leser ME; Murray BS; Dickinson E
    Langmuir; 2009 Sep; 25(17):10026-37. PubMed ID: 19459686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of acidification and heating on the rheological properties of oil-water interfaces with adsorbed milk proteins.
    Mellema M; Isenbart JG
    J Dairy Sci; 2004 Sep; 87(9):2769-78. PubMed ID: 15375034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheology and phase behavior of dense casein micelle dispersions.
    Bouchoux A; Debbou B; Gésan-Guiziou G; Famelart MH; Doublier JL; Cabane B
    J Chem Phys; 2009 Oct; 131(16):165106. PubMed ID: 19894981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bulk, Foam, and Interfacial Properties of Tannic Acid/Sodium Caseinate Nanocomplexes.
    Zhan F; Li J; Wang Y; Shi M; Li B; Sheng F
    J Agric Food Chem; 2018 Jul; 66(26):6832-6839. PubMed ID: 29883106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thin casein films as prepared by spin-coating: influence of film thickness and of pH.
    Müller-Buschbaum P; Gebhardt R; Maurer E; Bauer E; Gehrke R; Doster W
    Biomacromolecules; 2006 Jun; 7(6):1773-80. PubMed ID: 16768397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of poly (ethylene glycol) chains conformational transition on the properties of mixed DMPC/DMPE-PEG thin liquid films and monolayers.
    Georgiev GA; Sarker DK; Al-Hanbali O; Georgiev GD; Lalchev Z
    Colloids Surf B Biointerfaces; 2007 Oct; 59(2):184-93. PubMed ID: 17587556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of viscoelastic beta-lactoglobulin surface layers at the air-water interface by nonionic polymeric surfactants.
    Rippner Blomqvist B; Ridout MJ; Mackie AR; Wärnheim T; Claesson PM; Wilde P
    Langmuir; 2004 Nov; 20(23):10150-8. PubMed ID: 15518507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apparent voluminosity of casein micelles determined by rheometry.
    Nöbel S; Weidendorfer K; Hinrichs J
    J Colloid Interface Sci; 2012 Nov; 386(1):174-80. PubMed ID: 22918047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydration behavior of casein micelles in thin film geometry: a GISANS study?
    Metwalli E; Moulin JF; Gebhardt R; Cubitt R; Tolkach A; Kulozik U; Müller-Buschbaum P
    Langmuir; 2009 Apr; 25(7):4124-31. PubMed ID: 19714832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of monoglycerides on structural and topographical characteristics of adsorbed beta-casein films at the air-water interface.
    Fernández MC; Sánchez CC; Rodríguez Niño MR; Rodríguez Patino JM
    Biomacromolecules; 2006 Feb; 7(2):507-14. PubMed ID: 16471923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific effects of Ca(2+) ions and molecular structure of β-lactoglobulin interfacial layers that drive macroscopic foam stability.
    Braunschweig B; Schulze-Zachau F; Nagel E; Engelhardt K; Stoyanov S; Gochev G; Khristov K; Mileva E; Exerowa D; Miller R; Peukert W
    Soft Matter; 2016 Jul; 12(27):5995-6004. PubMed ID: 27337699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Influence of the Surface Chemistry of Cellulose Nanocrystals on Ethyl Lauroyl Arginate Foam Stability.
    Czakaj A; Chatzigiannakis E; Vermant J; Krzan M; Warszyński P
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.