These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 27721397)
1. On the early and developed stages of surface condensation: competition mechanism between interfacial and condensate bulk thermal resistances. Sun J; Wang HS Sci Rep; 2016 Oct; 6():35003. PubMed ID: 27721397 [TBL] [Abstract][Full Text] [Related]
2. Self-shedding and sweeping of condensate on composite nano-surface under external force field: enhancement mechanism for dropwise and filmwise condensation modes. Sun J; Wang HS Sci Rep; 2017 Aug; 7(1):8633. PubMed ID: 28819170 [TBL] [Abstract][Full Text] [Related]
3. The effect of surface wettability on water vapor condensation in nanoscale. Niu D; Tang GH Sci Rep; 2016 Jan; 6():19192. PubMed ID: 26754316 [TBL] [Abstract][Full Text] [Related]
4. Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer. Preston DJ; Wilke KL; Lu Z; Cruz SS; Zhao Y; Becerra LL; Wang EN Langmuir; 2018 Apr; 34(15):4658-4664. PubMed ID: 29578348 [TBL] [Abstract][Full Text] [Related]
5. Recurrent filmwise and dropwise condensation on a beetle mimetic surface. Hou Y; Yu M; Chen X; Wang Z; Yao S ACS Nano; 2015 Jan; 9(1):71-81. PubMed ID: 25482594 [TBL] [Abstract][Full Text] [Related]
7. Dependences of Formation and Transition of the Surface Condensation Mode on Wettability and Temperature Difference. Pu JH; Sun J; Sheng Q; Wang W; Wang HS Langmuir; 2020 Jan; 36(1):456-464. PubMed ID: 31840509 [TBL] [Abstract][Full Text] [Related]
8. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces. Li G; Alhosani MH; Yuan S; Liu H; Ghaferi AA; Zhang T Langmuir; 2014 Dec; 30(48):14498-511. PubMed ID: 25419845 [TBL] [Abstract][Full Text] [Related]
9. Deconstructing Temperature Gradients across Fluid Interfaces: The Structural Origin of the Thermal Resistance of Liquid-Vapor Interfaces. Muscatello J; Chacón E; Tarazona P; Bresme F Phys Rev Lett; 2017 Jul; 119(4):045901. PubMed ID: 29341757 [TBL] [Abstract][Full Text] [Related]
10. On the onset of surface condensation: formation and transition mechanisms of condensation mode. Sheng Q; Sun J; Wang Q; Wang W; Wang HS Sci Rep; 2016 Aug; 6():30764. PubMed ID: 27481071 [TBL] [Abstract][Full Text] [Related]
11. Simulating Heat Transfer During Transient Dropwise Condensation on a Low-Thermal-Conductivity Substrate. Macner AM; Daniel S; Steen PH Langmuir; 2019 Sep; 35(35):11566-11578. PubMed ID: 31381348 [TBL] [Abstract][Full Text] [Related]
12. Microscale Confinement and Wetting Contrast Enable Enhanced and Tunable Condensation. Yan X; Chen F; Zhao C; Wang X; Li L; Khodakarami S; Fazle Rabbi K; Li J; Hoque MJ; Chen F; Feng J; Miljkovic N ACS Nano; 2022 Jun; 16(6):9510-9522. PubMed ID: 35696260 [TBL] [Abstract][Full Text] [Related]
13. Preferred Mode of Atmospheric Water Vapor Condensation on Nanoengineered Surfaces: Dropwise or Filmwise? Thomas TM; Sinha Mahapatra P; Ganguly R; Tiwari MK Langmuir; 2023 Apr; 39(15):5396-5407. PubMed ID: 37014297 [TBL] [Abstract][Full Text] [Related]
14. Condensation in One-Dimensional Dead-End Nanochannels. Zhong J; Zandavi SH; Li H; Bao B; Persad AH; Mostowfi F; Sinton D ACS Nano; 2017 Jan; 11(1):304-313. PubMed ID: 27977139 [TBL] [Abstract][Full Text] [Related]
15. Rationally 3D-Textured Copper Surfaces for Laplace Pressure Imbalance-Induced Enhancement in Dropwise Condensation. Sharma CS; Stamatopoulos C; Suter R; von Rohr PR; Poulikakos D ACS Appl Mater Interfaces; 2018 Aug; 10(34):29127-29135. PubMed ID: 30067013 [TBL] [Abstract][Full Text] [Related]
16. Lattice Boltzmann Modeling of Condensation Heat Transfer on Downward-Facing Surfaces with Different Wettabilities. Wang X; Xu B; Chen Z; Yang Y; Cao Q Langmuir; 2020 Aug; 36(31):9204-9214. PubMed ID: 32660253 [TBL] [Abstract][Full Text] [Related]
17. Flow condensation on copper-based nanotextured superhydrophobic surfaces. Torresin D; Tiwari MK; Del Col D; Poulikakos D Langmuir; 2013 Jan; 29(2):840-8. PubMed ID: 23249322 [TBL] [Abstract][Full Text] [Related]
18. Molecular simulation of steady-state evaporation and condensation in the presence of a non-condensable gas. Liang Z; Keblinski P J Chem Phys; 2018 Feb; 148(6):064708. PubMed ID: 29448775 [TBL] [Abstract][Full Text] [Related]
19. Elucidating the Mechanism of Condensation-Mediated Degradation of Organofunctional Silane Self-Assembled Monolayer Coatings. Wang R; Jakhar K; Ahmed S; Antao DS ACS Appl Mater Interfaces; 2021 Jul; 13(29):34923-34934. PubMed ID: 34264646 [TBL] [Abstract][Full Text] [Related]
20. Bulk and interfacial properties of a dipolar-quadrupolar fluid in a uniform electric field: a density-functional approach. Warshavsky VB; Zeng XC Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011203. PubMed ID: 12935128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]