These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27721437)

  • 1. Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal Expansion.
    Xu H; Pasini D
    Sci Rep; 2016 Oct; 6():34924. PubMed ID: 27721437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimaterial Additively Manufactured Metamaterials Functionalized with Customizable Thermal Expansion in Multiple Directions.
    Xiao X; Chen J; Wang K; Yu Y; Wei K
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):47434-47446. PubMed ID: 37782300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bifunctional Metamaterials Incorporating Unusual Geminations of Poisson's Ratio and Coefficient of Thermal Expansion.
    Han Z; Xiao X; Chen J; Wei K; Wang Z; Yang X; Fang D
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36283006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing Mechanical Metamaterials with Kirigami-Inspired, Hierarchical Constructions for Giant Positive and Negative Thermal Expansion.
    Guo X; Ni X; Li J; Zhang H; Zhang F; Yu H; Wu J; Bai Y; Lei H; Huang Y; Rogers JA; Zhang Y
    Adv Mater; 2021 Jan; 33(3):e2004919. PubMed ID: 33289278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origami Metamaterials for Tunable Thermal Expansion.
    Boatti E; Vasios N; Bertoldi K
    Adv Mater; 2017 Jul; 29(26):. PubMed ID: 28466566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion.
    Wang Q; Jackson JA; Ge Q; Hopkins JB; Spadaccini CM; Fang NX
    Phys Rev Lett; 2016 Oct; 117(17):175901. PubMed ID: 27824463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable Mechanical Metamaterials with Tailorable Negative Poisson's Ratio and Arbitrary Thermal Expansion in Multiple Thermal Deformation Modes.
    Bai Y; Liu C; Li Y; Li J; Qiao L; Zhou J; Bai Y
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35905-35916. PubMed ID: 35880735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2D Mechanical Metamaterials with Widely Tunable Unusual Modes of Thermal Expansion.
    Ni X; Guo X; Li J; Huang Y; Zhang Y; Rogers JA
    Adv Mater; 2019 Nov; 31(48):e1905405. PubMed ID: 31595583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isotropic Negative Thermal Expansion Metamaterials.
    Wu L; Li B; Zhou J
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17721-7. PubMed ID: 27333052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-Structured Two-Component 3D Metamaterials with Negative Thermal-Expansion Coefficient from Positive Constituents.
    Qu J; Kadic M; Naber A; Wegener M
    Sci Rep; 2017 Jan; 7():40643. PubMed ID: 28079161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic multistable architected materials with temperature-dependent snapping sequence.
    Che K; Yuan C; Qi HJ; Meaud J
    Soft Matter; 2018 Mar; 14(13):2492-2499. PubMed ID: 29513315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly-stretchable 3D-architected Mechanical Metamaterials.
    Jiang Y; Wang Q
    Sci Rep; 2016 Sep; 6():34147. PubMed ID: 27667638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-structured medium with large isotropic negative thermal expansion.
    Cabras L; Brun M; Misseroni D
    Proc Math Phys Eng Sci; 2019 Dec; 475(2232):20190468. PubMed ID: 31892835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF
    Hu L; Chen J; Xu J; Wang N; Han F; Ren Y; Pan Z; Rong Y; Huang R; Deng J; Li L; Xing X
    J Am Chem Soc; 2016 Nov; 138(44):14530-14533. PubMed ID: 27783492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low Thermal Expansion Modulated by Off-Stoichiometric Effect in Nonstoichiometric Laves Phase Hf
    Li L; Tong P; Tong W; Jiang W; Ding Y; Lin H; Lin J; Yang C; Zhu F; Zhang X; Zhu X; Song W; Sun Y
    Inorg Chem; 2019 Dec; 58(24):16818-16822. PubMed ID: 31756094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational design of reconfigurable prismatic architected materials.
    Overvelde JT; Weaver JC; Hoberman C; Bertoldi K
    Nature; 2017 Jan; 541(7637):347-352. PubMed ID: 28102254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene Origami with Highly Tunable Coefficient of Thermal Expansion.
    Ho DT; Park HS; Kim SY; Schwingenschlögl U
    ACS Nano; 2020 Jul; 14(7):8969-8974. PubMed ID: 32538615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic Generation, Analysis, and Characterization of 3D Micro-architected Metamaterials.
    Trifale NT; Nauman EA; Yazawa K
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35534-35544. PubMed ID: 27977116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D architected temperature-tolerant organohydrogels with ultra-tunable energy absorption.
    Surjadi JU; Zhou Y; Wang T; Yang Y; Kai JJ; Lu Y; Wang Z
    iScience; 2021 Jul; 24(7):102789. PubMed ID: 34278275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additive manufacturing of 3D nano-architected metals.
    Vyatskikh A; Delalande S; Kudo A; Zhang X; Portela CM; Greer JR
    Nat Commun; 2018 Feb; 9(1):593. PubMed ID: 29426947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.