These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
61 related articles for article (PubMed ID: 27721501)
1. Corrigendum: Transcriptomic comparison between Brassica oleracea and rice (Oryza sativa) reveals diverse modulations on cell death in response to Sclerotinia sclerotiorum. Mei J; Ding Y; Li Y; Tong C; Du H; Yu Y; Wan H; Xiong Q; Yu J; Liu S; Li J; Qian W Sci Rep; 2016 Oct; 6():34900. PubMed ID: 27721501 [No Abstract] [Full Text] [Related]
2. Transcriptomic comparison between Brassica oleracea and rice (Oryza sativa) reveals diverse modulations on cell death in response to Sclerotinia sclerotiorum. Mei J; Ding Y; Li Y; Tong C; Du H; Yu Y; Wan H; Xiong Q; Yu J; Liu S; Li J; Qian W Sci Rep; 2016 Sep; 6():33706. PubMed ID: 27647523 [TBL] [Abstract][Full Text] [Related]
3. Corrigendum: Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y Sci Rep; 2017 Feb; 7():42829. PubMed ID: 28220814 [No Abstract] [Full Text] [Related]
4. Transfer of sclerotinia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step. Mei J; Liu Y; Wei D; Wittkop B; Ding Y; Li Q; Li J; Wan H; Li Z; Ge X; Frauen M; Snowdon RJ; Qian W; Friedt W Theor Appl Genet; 2015 Apr; 128(4):639-44. PubMed ID: 25628163 [TBL] [Abstract][Full Text] [Related]
5. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum. Cao JY; Xu YP; Cai XZ J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552 [TBL] [Abstract][Full Text] [Related]
6. Components of a Rice-Oilseed Rape Production System Augmented with Trichoderma sp. Tri-1 Control Sclerotinia sclerotiorum on Oilseed Rape. Hu X; Roberts DP; Xie L; Maul JE; Yu C; Li Y; Zhang Y; Qin L; Liao X Phytopathology; 2015 Oct; 105(10):1325-33. PubMed ID: 26390095 [TBL] [Abstract][Full Text] [Related]
7. Co-transformation of canola by chimeric chitinase and tlp genes towards improving resistance to Sclerotinia sclerotiorum. Aghazadeh R; Zamani M; Motallebi M; Moradyar M; Moghadassi Jahromi Z World J Microbiol Biotechnol; 2016 Sep; 32(9):144. PubMed ID: 27430511 [TBL] [Abstract][Full Text] [Related]
8. Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus. Seifbarghi S; Borhan MH; Wei Y; Coutu C; Robinson SJ; Hegedus DD BMC Genomics; 2017 Mar; 18(1):266. PubMed ID: 28356071 [TBL] [Abstract][Full Text] [Related]
9. Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level. Cao JY; Xu YP; Zhao L; Li SS; Cai XZ Plant Mol Biol; 2016 Sep; 92(1-2):39-55. PubMed ID: 27325118 [TBL] [Abstract][Full Text] [Related]
10. Enhanced resistance to Sclerotinia sclerotiorum in Brassica napus by co-expression of defensin and chimeric chitinase genes. Zarinpanjeh N; Motallebi M; Zamani MR; Ziaei M J Appl Genet; 2016 Nov; 57(4):417-425. PubMed ID: 26862081 [TBL] [Abstract][Full Text] [Related]
11. Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum. Ziaei M; Motallebi M; Zamani MR; Panjeh NZ Biotechnol Lett; 2016 Jun; 38(6):1021-32. PubMed ID: 26875090 [TBL] [Abstract][Full Text] [Related]
12. A mutant of the nematophagous fungus Paecilomyces lilacinus (Thom) is a novel biocontrol agent for Sclerotinia sclerotiorum. Yang F; Abdelnabby H; Xiao Y Microb Pathog; 2015 Dec; 89():169-76. PubMed ID: 26521137 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide analysis of UDP-glycosyltransferase super family in Brassica rapa and Brassica oleracea reveals its evolutionary history and functional characterization. Yu J; Hu F; Dossa K; Wang Z; Ke T BMC Genomics; 2017 Jun; 18(1):474. PubMed ID: 28645261 [TBL] [Abstract][Full Text] [Related]
14. Phosphatase activity in susceptible and resistant cultivars of Brassica juncea inoculated with isolates of Macrophomina phaseolina and Sclerotinia sclerotiorum. Rai JN; Srivastava SK; Dhawan S Microbios; 1979; 25(100):107-10. PubMed ID: 542131 [TBL] [Abstract][Full Text] [Related]
15. Viruses of the plant pathogenic fungus Sclerotinia sclerotiorum. Jiang D; Fu Y; Guoqing L; Ghabrial SA Adv Virus Res; 2013; 86():215-48. PubMed ID: 23498908 [TBL] [Abstract][Full Text] [Related]
17. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Londo JP; Chiang YC; Hung KH; Chiang TY; Schaal BA Proc Natl Acad Sci U S A; 2006 Jun; 103(25):9578-83. PubMed ID: 16766658 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Wei L; Jian H; Lu K; Filardo F; Yin N; Liu L; Qu C; Li W; Du H; Li J Plant Biotechnol J; 2016 Jun; 14(6):1368-80. PubMed ID: 26563848 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Wang Z; Mao H; Dong C; Ji R; Cai L; Fu H; Liu S Mol Plant Microbe Interact; 2009 Mar; 22(3):235-44. PubMed ID: 19245318 [TBL] [Abstract][Full Text] [Related]
20. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq. Joshi RK; Megha S; Rahman MH; Basu U; Kav NN Gene; 2016 Sep; 590(1):57-67. PubMed ID: 27265030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]