These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27721648)

  • 1. Lower Limb Rehabilitation Using Patient Data.
    Rastegarpanah A; Saadat M
    Appl Bionics Biomech; 2016; 2016():2653915. PubMed ID: 27721648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel Robot for Lower Limb Rehabilitation Exercises.
    Rastegarpanah A; Saadat M; Borboni A
    Appl Bionics Biomech; 2016; 2016():8584735. PubMed ID: 27799727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.
    Lyu M; Chen W; Ding X; Wang J; Bai S; Ren H
    Rev Sci Instrum; 2016 Oct; 87(10):104301. PubMed ID: 27802730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trajectory planning of a robot for lower limb rehabilitation.
    Pei Y; Kim Y; Obinata G; Hase K; Stefanov D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1259-63. PubMed ID: 22254545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screw theory based mathematical modeling and kinematic analysis of a novel ankle rehabilitation robot with a constrained 3-PSP mechanism topology.
    Liao Z; Yao L; Lu Z; Zhang J
    Int J Intell Robot Appl; 2018; 2(3):351-360. PubMed ID: 30294664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation.
    Vallery H; van Asseldonk EH; Buss M; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):23-30. PubMed ID: 19211320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Dof Upper Limb Rehabilitation Robot Driven by Straight Fibers Pneumatic Muscles.
    Durante F; Raparelli T; Beomonte Zobel P
    Bioengineering (Basel); 2022 Aug; 9(8):. PubMed ID: 36004902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conceptual Design and Computational Modeling Analysis of a Single-Leg System of a Quadruped Bionic Horse Robot Driven by a Cam-Linkage Mechanism.
    Wang L; Zhang W; Wang C; Meng F; Du W; Wang T
    Appl Bionics Biomech; 2019; 2019():2161038. PubMed ID: 31814844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-Based Control of a 4-DOF Rehabilitation Parallel Robot with Online Identification of the Gravitational Term.
    Escarabajal RJ; Pulloquinga JL; Mata V; Valera Á; Díaz-Rodríguez M
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36905000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust adaptive PD-like control of lower limb rehabilitation robot based on human movement data.
    Hu N; Wang A; Wu Y
    PeerJ Comput Sci; 2021; 7():e394. PubMed ID: 33817040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An optimized design of a parallel robot for gait training.
    Maddalena M; Saadat M; Rastegarpanah A; Loureiro RCV
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():418-423. PubMed ID: 28813855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vision-Based Hybrid Controller to Release a 4-DOF Parallel Robot from a Type II Singularity.
    Pulloquinga JL; Escarabajal RJ; Ferrándiz J; Vallés M; Mata V; Urízar M
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34199313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractional order PID for tracking control of a parallel robotic manipulator type delta.
    Angel L; Viola J
    ISA Trans; 2018 Aug; 79():172-188. PubMed ID: 29793737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Control of a Pneumatic-Actuator 3-DOF Translational Parallel Manipulator with Robot Vision.
    Lee LW; Chiang HH; Li IH
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30934637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of segmental coordination analysis of nonparetic and paretic limbs during obstacle clearance in community-dwelling persons after stroke.
    MacLellan MJ; Richards CL; Fung J; McFadyen BJ
    PM R; 2013 May; 5(5):381-91. PubMed ID: 23419745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait patterns in children with limb length discrepancy.
    Aiona M; Do KP; Emara K; Dorociak R; Pierce R
    J Pediatr Orthop; 2015; 35(3):280-4. PubMed ID: 25075889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial body weight support treadmill training speed influences paretic and non-paretic leg muscle activation, stride characteristics, and ratings of perceived exertion during acute stroke rehabilitation.
    Burnfield JM; Buster TW; Goldman AJ; Corbridge LM; Harper-Hanigan K
    Hum Mov Sci; 2016 Jun; 47():16-28. PubMed ID: 26845732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow and faster post-stroke walkers have a different trunk progression and braking impulse during gait.
    Duclos NC; Duclos C; Nadeau S
    Gait Posture; 2019 Feb; 68():483-487. PubMed ID: 30616177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validity and Reproducibility of Inertial Physilog Sensors for Spatiotemporal Gait Analysis in Patients With Stroke.
    Lefeber N; Degelaen M; Truyers C; Safin I; Beckwee D
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1865-1874. PubMed ID: 31352347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a Force-Torque Sensor for Self-Calibration of a 6-DOF Medical Robot.
    Joubair A; Zhao LF; Bigras P; Bonev IA
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27258278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.