These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27722020)

  • 21. Single molecule force measurements of perlecan/HSPG2: A key component of the osteocyte pericellular matrix.
    Wijeratne SS; Martinez JR; Grindel BJ; Frey EW; Li J; Wang L; Farach-Carson MC; Kiang CH
    Matrix Biol; 2016 Mar; 50():27-38. PubMed ID: 26546708
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The dependency of solute diffusion on molecular weight and shape in intact bone.
    Li W; You L; Schaffler MB; Wang L
    Bone; 2009 Nov; 45(5):1017-23. PubMed ID: 19647808
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Chemo-poroelastic Analysis of Mechanically Induced Fluid and Solute Transport in an Osteonal Cortical Bone.
    Jin ZH; Janes JG; Peterson ML
    Ann Biomed Eng; 2021 Jan; 49(1):299-309. PubMed ID: 32514933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study on mass transfer in the bone lacunar-canalicular system under different gravity fields.
    Wang H; Gao L; Chen X; Zhang C
    J Bone Miner Metab; 2022 Nov; 40(6):940-950. PubMed ID: 36350408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Osteocyte Shape on Fluid Flow and Fluid Shear Stress of the Loaded Bone.
    Yang F; Yu W; Huo X; Li H; Qi Q; Yang X; Shi N; Wu X; Chen W
    Biomed Res Int; 2022; 2022():3935803. PubMed ID: 35677099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of ultrasound waves with bone remodelling: a multiscale computational study.
    Baron C; Nguyen VH; Naili S; Guivier-Curien C
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1755-1764. PubMed ID: 32078068
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanically induced bone formation is not sensitive to local osteocyte density in rat vertebral cancellous bone.
    Cresswell EN; Nguyen TM; Horsfield MW; Alepuz AJ; Metzger TA; Niebur GL; Hernandez CJ
    J Orthop Res; 2018 Feb; 36(2):672-681. PubMed ID: 28513889
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses.
    Weinbaum S; Cowin SC; Zeng Y
    J Biomech; 1994 Mar; 27(3):339-60. PubMed ID: 8051194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Canalicular Junctions in the Osteocyte Lacuno-Canalicular Network of Cortical Bone.
    Wittig NK; Laugesen M; Birkbak ME; Bach-Gansmo FL; Pacureanu A; Bruns S; Wendelboe MH; Brüel A; Sørensen HO; Thomsen JS; Birkedal H
    ACS Nano; 2019 Jun; 13(6):6421-6430. PubMed ID: 31095362
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strain amplification analysis of an osteocyte under static and cyclic loading: a finite element study.
    Wang L; Dong J; Xian CJ
    Biomed Res Int; 2015; 2015():376474. PubMed ID: 25664319
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model.
    Kamioka H; Kameo Y; Imai Y; Bakker AD; Bacabac RG; Yamada N; Takaoka A; Yamashiro T; Adachi T; Klein-Nulend J
    Integr Biol (Camb); 2012 Oct; 4(10):1198-206. PubMed ID: 22858651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deformation-induced hierarchical flows and drag forces in bone canaliculi and matrix microporosity.
    Mak AF; Huang DT; Zhang JD; Tong P
    J Biomech; 1997 Jan; 30(1):11-8. PubMed ID: 8970919
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational Investigation on the Biomechanical Responses of the Osteocytes to the Compressive Stimulus: A Poroelastic Model.
    Wang L; Dong J; Xian CJ
    Biomed Res Int; 2018; 2018():4071356. PubMed ID: 29581973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A finite element analysis for the prediction of load-induced fluid flow and mechanochemical transduction in bone.
    Steck R; Niederer P; Knothe Tate ML
    J Theor Biol; 2003 Jan; 220(2):249-59. PubMed ID: 12468296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical simulation of osteocyte cell in response to directional mechanical loadings and mechanotransduction analysis: Considering lacunar-canalicular interstitial fluid flow.
    Joukar A; Niroomand-Oscuii H; Ghalichi F
    Comput Methods Programs Biomed; 2016 Sep; 133():133-141. PubMed ID: 27393805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Canalicular fluid flow induced by bending of a long bone.
    Srinivasan S; Gross TS
    Med Eng Phys; 2000 Mar; 22(2):127-33. PubMed ID: 10854966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon.
    Wu X; Wang N; Wang Z; Yu W; Wang Y; Guo Y; Chen W
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):149. PubMed ID: 28155688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of Lacunar-Canalicular Interstitial Fluid Flow Through Computational Modeling of Fluorescence Recovery After Photobleaching.
    Kwon RY; Frangos JA
    Cell Mol Bioeng; 2010 Sep; 3(3):296-306. PubMed ID: 21076644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative analysis of diffusive and stress induced nutrient transport efficiency in the lacunar-canalicular system of osteons.
    Petrov N; Pollack SR
    Biorheology; 2003; 40(1-3):347-53. PubMed ID: 12454425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ measurement of solute transport in the bone lacunar-canalicular system.
    Wang L; Wang Y; Han Y; Henderson SC; Majeska RJ; Weinbaum S; Schaffler MB
    Proc Natl Acad Sci U S A; 2005 Aug; 102(33):11911-6. PubMed ID: 16087872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.