These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
424 related articles for article (PubMed ID: 27722296)
81. Underwater self-cleaning scaly fabric membrane for oily water separation. Zheng X; Guo Z; Tian D; Zhang X; Li W; Jiang L ACS Appl Mater Interfaces; 2015 Feb; 7(7):4336-43. PubMed ID: 25643170 [TBL] [Abstract][Full Text] [Related]
82. Anisotropic cellulose nanofiber/chitosan aerogel with thermal management and oil absorption properties. Zhang M; Jiang S; Han F; Li M; Wang N; Liu L Carbohydr Polym; 2021 Jul; 264():118033. PubMed ID: 33910743 [TBL] [Abstract][Full Text] [Related]
83. Air superhydrophilic-superoleophobic SiO Xiong W; Li L; Qiao F; Chen J; Chen Z; Zhou X; Hu K; Zhao X; Xie Y J Colloid Interface Sci; 2021 Oct; 600():118-126. PubMed ID: 34010769 [TBL] [Abstract][Full Text] [Related]
84. Facile synthesis of flexible mesoporous aerogel with superhydrophobicity for efficient removal of layered and emulsified oil from water. Wang J; Wang H J Colloid Interface Sci; 2018 Nov; 530():372-382. PubMed ID: 29990776 [TBL] [Abstract][Full Text] [Related]
85. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. He J; Zhao H; Li X; Su D; Zhang F; Ji H; Liu R J Hazard Mater; 2018 Mar; 346():199-207. PubMed ID: 29275109 [TBL] [Abstract][Full Text] [Related]
86. Green Fabrication of Superhydrophilic/Underwater Superoleophobic Composite Membrane for High-Efficiency Oil/Water Separation in Harsh Environments. Xu X; Kao H; Yu X; Zhou J; Hou P; Xu G; Chen J Langmuir; 2024 Jun; 40(22):11661-11669. PubMed ID: 38781140 [TBL] [Abstract][Full Text] [Related]
87. Whey protein aerogel as blended with cellulose crystalline particles or loaded with fish oil. Ahmadi M; Madadlou A; Saboury AA Food Chem; 2016 Apr; 196():1016-22. PubMed ID: 26593584 [TBL] [Abstract][Full Text] [Related]
88. Utilization and reusability of hydroxyethyl cellulose alumina based aerogels for the removal of spilled oil. Simón-Herrero C; Romero A; Esteban-Arranz A; de la Osa AR; Sánchez-Silva L Chemosphere; 2020 Dec; 260():127568. PubMed ID: 32683011 [TBL] [Abstract][Full Text] [Related]
89. Versatile fabrication of a superhydrophobic and ultralight cellulose-based aerogel for oil spillage clean-up. Zhang H; Li Y; Xu Y; Lu Z; Chen L; Huang L; Fan M Phys Chem Chem Phys; 2016 Oct; 18(40):28297-28306. PubMed ID: 27711507 [TBL] [Abstract][Full Text] [Related]
90. Design of carboxymethyl cellulose/alginate aerogels with anti-fouling and light-driven self-cleaning for enhanced oily wastewater remediation. Wang T; Wang W; Hu C; Zheng J; Zhu Z; Liu B Carbohydr Polym; 2024 Oct; 342():122358. PubMed ID: 39048190 [TBL] [Abstract][Full Text] [Related]
91. Durable, cost-effective and superhydrophilic chitosan-alginate hydrogel-coated mesh for efficient oil/water separation. Li Y; Zhang H; Ma C; Yin H; Gong L; Duh Y; Feng R Carbohydr Polym; 2019 Dec; 226():115279. PubMed ID: 31582078 [TBL] [Abstract][Full Text] [Related]
92. Facile fabrication of wood-inspired aerogel from chitosan for efficient removal of oil from Water. Yi L; Yang J; Fang X; Xia Y; Zhao L; Wu H; Guo S J Hazard Mater; 2020 Mar; 385():121507. PubMed ID: 31690505 [TBL] [Abstract][Full Text] [Related]
93. Biomass-derived oriented neurovascular network-like superhydrophobic aerogel as robust and recyclable oil droplets captor for versatile oil/water separation. Tian N; Wu S; Han G; Zhang Y; Li Q; Dong T J Hazard Mater; 2022 Feb; 424(Pt B):127393. PubMed ID: 34656938 [TBL] [Abstract][Full Text] [Related]
94. A superhydrophilic cement-coated mesh: an acid, alkali, and organic reagent-free material for oil/water separation. Song J; Li S; Zhao C; Lu Y; Zhao D; Sun J; Roy T; Carmalt CJ; Deng X; Parkin IP Nanoscale; 2018 Jan; 10(4):1920-1929. PubMed ID: 29319091 [TBL] [Abstract][Full Text] [Related]
95. Facile Synthesis of Flexible Methylsilsesquioxane Aerogels with Surface Modifications for Sound- Absorbance, Fast Dye Adsorption and Oil/Water Separation. Guo X; Shan J; Lai Z; Lei W; Ding R; Zhang Y; Yang H Molecules; 2018 Apr; 23(4):. PubMed ID: 29670068 [TBL] [Abstract][Full Text] [Related]
96. A functionalized nano-structured cellulosic sorbent aerogel for oil spill cleanup: Synthesis and characterization. Bidgoli H; Mortazavi Y; Khodadadi AA J Hazard Mater; 2019 Mar; 366():229-239. PubMed ID: 30530014 [TBL] [Abstract][Full Text] [Related]
97. Sustainable, superhydrophobic membranes based on bacterial cellulose for gravity-driven oil/water separation. Wang FP; Zhao XJ; Wahid F; Zhao XQ; Qin XT; Bai H; Xie YY; Zhong C; Jia SR Carbohydr Polym; 2021 Feb; 253():117220. PubMed ID: 33278983 [TBL] [Abstract][Full Text] [Related]
98. Preparation of a Magnetic Core-Shell Bioreactor for Oil/Water Separation and Biodegradation. Chen L; Qu N; Lu H; Jiang S; Zhang B; Hasi QM; Zhang Y Langmuir; 2023 Oct; 39(42):14891-14903. PubMed ID: 37819843 [TBL] [Abstract][Full Text] [Related]
99. One-pot fabrication of hydrophobic, superelastic, harakeke-derived nanocellulose aerogels with excellent shape recovery for oil adsorption and water-in-oil emulsion separation. Zhai Y; Yuan X Int J Biol Macromol; 2024 Sep; 280(Pt 2):135489. PubMed ID: 39260658 [TBL] [Abstract][Full Text] [Related]
100. Mechanically durable green aerogel composite based on agricultural lignocellulosic residue for organic liquids/oil sorption. Chhajed M; Verma C; Sathawane M; Singh S; Maji PK Mar Pollut Bull; 2022 Jul; 180():113790. PubMed ID: 35689938 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]