BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 27722318)

  • 1. Superheating and melting within aluminum core-oxide shell nanoparticles for a broad range of heating rates: multiphysics phase field modeling.
    Hwang YS; Levitas VI
    Phys Chem Chem Phys; 2016 Oct; 18(41):28835-28853. PubMed ID: 27722318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled phase field, heat conduction, and elastodynamic simulations of kinetic superheating and nanoscale melting of aluminum nanolayer irradiated by picosecond laser.
    Hwang YS; Levitas VI
    Phys Chem Chem Phys; 2015 Dec; 17(47):31758-68. PubMed ID: 26561920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superheating in linear polymers studied by ultrafast nanocalorimetry.
    Minakov AA; Wurm A; Schick C
    Eur Phys J E Soft Matter; 2007 May; 23(1):43-53. PubMed ID: 17510749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High thermal stability of core-shell structures dominated by negative interface energy.
    Zhu YF; Zhao N; Jin B; Zhao M; Jiang Q
    Phys Chem Chem Phys; 2017 Mar; 19(13):9253-9260. PubMed ID: 28322367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanochemical mechanism for reaction of aluminium nano- and micrometre-scale particles.
    Levitas VI
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120215. PubMed ID: 24146008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melting and Solidification Behaviour of Bi-Pb Multiphase Alloy Nanoparticles Embedded in Aluminum Matrix.
    Khan PY; Biswas K
    J Nanosci Nanotechnol; 2015 Jan; 15(1):309-16. PubMed ID: 26328350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-stressing micron-scale aluminum core-shell particles to improve reactivity.
    Levitas VI; McCollum J; Pantoya M
    Sci Rep; 2015 Jan; 5():7879. PubMed ID: 25597747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation and ignition of aluminum nanomaterials.
    Noor F; Zhang H; Korakianitis T; Wen D
    Phys Chem Chem Phys; 2013 Dec; 15(46):20176-88. PubMed ID: 24162275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superheating of monolayer ice in graphene nanocapillaries.
    Zhu Y; Wang F; Wu H
    J Chem Phys; 2017 Apr; 146(13):134703. PubMed ID: 28390346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal.
    Levitas VI; Henson BF; Smilowitz LB; Asay BW
    J Phys Chem B; 2006 May; 110(20):10105-19. PubMed ID: 16706472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of melting and the glass transition of nitromethane.
    Zheng L; Luo SN; Thompson DL
    J Chem Phys; 2006 Apr; 124(15):154504. PubMed ID: 16674239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superheating and induced melting at semiconductor interfaces.
    Huang KC; Wang T; Joannopoulos JD
    Phys Rev Lett; 2005 May; 94(17):175702. PubMed ID: 15904312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface induced melting of long Al nanowires: phase field model and simulations for pressure loading and without it.
    Javanbakht M; Eskandari SS; Silani M
    Nanotechnology; 2022 Jul; 33(42):. PubMed ID: 35839666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of heat and electron irradiation on the melting behavior of Al-Si alloy particles and motion of the Al nanosphere within.
    Howe JM; Yokota T; Murayama M; Jesser WA
    J Electron Microsc (Tokyo); 2004; 53(2):107-14. PubMed ID: 15180204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spallation of Isolated Aluminum Nanoparticles by Rapid Photothermal Heating.
    Zakiyyan N; Mathai C; McFarland J; Gangopadhyay S; Maschmann MR
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):55277-55284. PubMed ID: 36445833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size and mechanics effects in surface-induced melting of nanoparticles.
    Levitas VI; Samani K
    Nat Commun; 2011; 2():284. PubMed ID: 21505440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bulk melting of ice at the limit of superheating.
    Schmeisser M; Iglev H; Laubereau A
    J Phys Chem B; 2007 Sep; 111(38):11271-5. PubMed ID: 17784744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium melting and crystallization of a model Lennard-Jones system.
    Luo SN; Strachan A; Swift DC
    J Chem Phys; 2004 Jun; 120(24):11640-9. PubMed ID: 15268198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural evolution of Pt-Au nanoalloys during heating process: comparison of random and core-shell orderings.
    Yang Z; Yang X; Xu Z; Liu S
    Phys Chem Chem Phys; 2009 Aug; 11(29):6249-55. PubMed ID: 19606336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melting and superheating in solids with volume shrinkage at melting: a molecular dynamics study of silicon.
    Zhang Q; Li Q; Li M
    J Chem Phys; 2013 Jan; 138(4):044504. PubMed ID: 23387602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.