These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 27722318)

  • 21. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.
    Johnston JC; Molinero V
    J Am Chem Soc; 2012 Apr; 134(15):6650-9. PubMed ID: 22452637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tunable thermodynamic stability of Au-CuPt core-shell trimetallic nanoparticles by controlling the alloy composition: insights from atomistic simulations.
    Huang R; Shao GF; Wen YH; Sun SG
    Phys Chem Chem Phys; 2014 Nov; 16(41):22754-61. PubMed ID: 25234428
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superheating and solid-liquid phase coexistence in nanoparticles with nonmelting surfaces.
    Schebarchov D; Hendy SC
    Phys Rev Lett; 2006 Jun; 96(25):256101. PubMed ID: 16907324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigations on the thermal behavior of omeprazole and other sulfoxides.
    Rosenblatt KM; Bunjes H; Seeling A; Oelschläger H
    Pharmazie; 2005 Jul; 60(7):503-7. PubMed ID: 16076075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Local and bulk melting of shocked columnar nanocrystalline Cu: Dynamics, anisotropy, premelting, superheating, supercooling, and re-crystallization.
    He AM; Duan SQ; Shao JL; Wang P; Luo SN
    J Chem Phys; 2013 Aug; 139(7):074502. PubMed ID: 23968097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrafast superheating and melting of bulk ice.
    Iglev H; Schmeisser M; Simeonidis K; Thaller A; Laubereau A
    Nature; 2006 Jan; 439(7073):183-6. PubMed ID: 16407948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solid-solid phase transformation via virtual melting significantly below the melting temperature.
    Levitas VI; Henson BF; Smilowitz LB; Asay BW
    Phys Rev Lett; 2004 Jun; 92(23):235702. PubMed ID: 15245170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoscopic Thermodynamics.
    Qi W
    Acc Chem Res; 2016 Sep; 49(9):1587-95. PubMed ID: 27355129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diverse melting modes and structural collapse of hollow bimetallic core-shell nanoparticles: a perspective from molecular dynamics simulations.
    Huang R; Shao GF; Zeng XM; Wen YH
    Sci Rep; 2014 Nov; 4():7051. PubMed ID: 25394424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
    Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y
    J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of shell thickness on the thermal stability and melting-like behavior of Al@Fe core-shell nanoparticles from atomistic simulations: a structural and dynamic description.
    Cuba-Supanta G; Pinto-Vergara MZ; Huaman Morales E; Romero Peña MH; Rojas-Tapia J
    J Phys Condens Matter; 2023 May; 35(32):. PubMed ID: 37146619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Core-Shell Transformation-Imprinted Solder Bumps Enabling Low-Temperature Fluidic Self-Assembly and Self-Alignment of Chips and High Melting Point Interconnects.
    Kaltwasser M; Schmidt U; Biswas S; Reiprich J; Schlag L; Isaac NA; Stauden T; Jacobs HO
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40608-40613. PubMed ID: 30433752
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Melting of defective Cu with stacking faults.
    Han LB; An Q; Fu RS; Zheng L; Luo SN
    J Chem Phys; 2009 Jan; 130(2):024508. PubMed ID: 19154039
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solid-liquid transitions of sodium chloride at high pressures.
    An Q; Zheng L; Fu R; Ni S; Luo SN
    J Chem Phys; 2006 Oct; 125(15):154510. PubMed ID: 17059275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Core atoms escape from the shell: reverse segregation of Pb-Al core-shell nanoclusters via nanoscale melting.
    Wu W; Pavloudis T; Palmer RE
    Discov Nano; 2023 Nov; 18(1):143. PubMed ID: 37975964
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics simulations of the melting of aluminum nanoparticles.
    Alavi S; Thompson DL
    J Phys Chem A; 2006 Feb; 110(4):1518-23. PubMed ID: 16435812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Novel Approach to Investigate the Superheating Grain Refinement Process of Aluminum-Bearing Magnesium Alloys Using Rapid Solidification Process.
    Jung S; Park Y; Lee Y
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Size-dependent melting and coalescence of tungsten nanoclusters via molecular dynamics simulation.
    Liu CM; Xu C; Cheng Y; Chen XR; Cai LC
    Phys Chem Chem Phys; 2013 Sep; 15(33):14069-79. PubMed ID: 23852181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Melting temperature of metal polycrystalline nanowires electrochemically deposited into the pores of anodic aluminum oxide.
    Shilyaeva YI; Bardushkin VV; Gavrilov SA; Silibin MV; Yakovlev VB; Borgardt NI; Volkov RL; Smirnov DI; Zheludkevich ML
    Phys Chem Chem Phys; 2014 Sep; 16(36):19394-401. PubMed ID: 25101924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.