These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 27722318)

  • 41. Molecular dynamics studies of melting and solid-state transitions of ammonium nitrate.
    Velardez GF; Alavi S; Thompson DL
    J Chem Phys; 2004 May; 120(19):9151-9. PubMed ID: 15267851
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Superheating of grain boundaries within bulk colloidal crystals.
    Xiao X; Wang L; Wang Z; Wang Z
    Nat Commun; 2022 Mar; 13(1):1599. PubMed ID: 35332168
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Estimation of the effects of longitudinal temperature gradients caused by frictional heating on the solute retention using fully porous and superficially porous sub-2μm materials.
    Fekete S; Fekete J; Guillarme D
    J Chromatogr A; 2014 Sep; 1359():124-30. PubMed ID: 25069746
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of a simultaneous Hugoniot and temperature measurement for preheated-metal shock experiments: melting temperatures of Ta at pressures of 100 GPa.
    Li J; Zhou X; Li J; Wu Q; Cai L; Dai C
    Rev Sci Instrum; 2012 May; 83(5):053902. PubMed ID: 22667628
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Experimental study of paraffin melting in cylindrical cavity with central electric heating rod.
    Wang S; Guo Y; Peng C; Wang W
    J Environ Manage; 2019 May; 237():264-271. PubMed ID: 30798045
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Benefits of Silica Core-Shell Structures on the Temperature Sensing Properties of Er,Yb:GdVO4 Up-Conversion Nanoparticles.
    Savchuk OA; Carvajal JJ; Cascales C; Aguiló M; Díaz F
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7266-73. PubMed ID: 26949971
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Atomic-resolution imaging of surface and core melting in individual size-selected Au nanoclusters on carbon.
    Foster DM; Pavloudis T; Kioseoglou J; Palmer RE
    Nat Commun; 2019 Jun; 10(1):2583. PubMed ID: 31197150
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study.
    Liang T; Zhou D; Wu Z; Shi P
    Nanotechnology; 2017 Dec; 28(48):485704. PubMed ID: 29019463
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanistic aspects of homogeneous and heterogeneous melting processes.
    Delogu F
    J Phys Chem B; 2006 Jun; 110(25):12645-52. PubMed ID: 16800597
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Melting temperatures of H2O up to 72 GPa measured in a diamond anvil cell using CO2 laser heating technique.
    Kimura T; Kuwayama Y; Yagi T
    J Chem Phys; 2014 Feb; 140(7):074501. PubMed ID: 24559351
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Melting at Mg/Al interface in Mg-Al-Mg nanolayer by molecular dynamics simulations.
    Lv XQ; Li XY
    Nanotechnology; 2022 Jan; 33(14):. PubMed ID: 34937008
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extreme superheating and supercooling of encapsulated metals in fullerenelike shells.
    Banhart F; Hernández E; Terrones M
    Phys Rev Lett; 2003 May; 90(18):185502. PubMed ID: 12786019
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In situ transmission-electron-microscopy investigation of melting in submicron Al-Si alloy particles under electron-beam irradiation.
    Yokota T; Murayama M; Howe JM
    Phys Rev Lett; 2003 Dec; 91(26 Pt 1):265504. PubMed ID: 14754065
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Au@Void@Ag Yolk-Shell Nanoclusters Visited by Molecular Dynamics Simulation: The Effects of Structural Factors on Thermodynamic Stability.
    Akbarzadeh H; Mehrjouei E; Shamkhali AN
    J Phys Chem Lett; 2017 Jul; 8(13):2990-2998. PubMed ID: 28618220
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Melting and superheating of nanowires--a nanotube approach.
    Sar DK; Nanda KK
    Nanotechnology; 2010 May; 21(20):205701. PubMed ID: 20413835
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Superheating of ice crystals in antifreeze protein solutions.
    Celik Y; Graham LA; Mok YF; Bar M; Davies PL; Braslavsky I
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5423-8. PubMed ID: 20215465
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Size-dependent superheating in confined Pb(111) films.
    Akhter JI
    J Phys Condens Matter; 2005 Jan; 17(1):53-60. PubMed ID: 21690668
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles.
    Roshanghias A; Yakymovych A; Bernardi J; Ipser H
    Nanoscale; 2015 Mar; 7(13):5843-51. PubMed ID: 25757694
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low-melting-point polymeric nanoshells for thermal-triggered drug release under hyperthermia condition.
    Dabbagh A; Mahmoodian R; Abdullah BJ; Abdullah H; Hamdi M; Abu Kasim NH
    Int J Hyperthermia; 2015; 31(8):920-9. PubMed ID: 26670340
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quasi-isochoric superheating of nanoparticles embedded in rigid matrixes.
    Yang CC; Li S
    J Phys Chem B; 2007 Jun; 111(25):7318-20. PubMed ID: 17539678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.