BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27722335)

  • 1. Dipeptide concave nanospheres based on interfacially controlled self-assembly: from crescent to solid.
    Wang J; Shen G; Ma K; Jiao T; Liu K; Yan X
    Phys Chem Chem Phys; 2016 Nov; 18(45):30926-30930. PubMed ID: 27722335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.
    Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK
    ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ostwald's rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers.
    Levin A; Mason TO; Adler-Abramovich L; Buell AK; Meisl G; Galvagnion C; Bram Y; Stratford SA; Dobson CM; Knowles TP; Gazit E
    Nat Commun; 2014 Nov; 5():5219. PubMed ID: 25391268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of pH on the self-assembly of diphenylalanine peptides: molecular insights from coarse-grained simulations.
    Wang Y; Wang K; Zhao X; Xu X; Sun T
    Soft Matter; 2023 Aug; 19(30):5749-5757. PubMed ID: 37462931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-step kinetic model of the self-assembly mechanism for diphenylalanine micro/nanotube formation.
    Ishikawa MS; Busch C; Motzkus M; Martinho H; Buckup T
    Phys Chem Chem Phys; 2017 Dec; 19(47):31647-31654. PubMed ID: 29164193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanding the structural diversity of peptide assemblies by coassembling dipeptides with diphenylalanine.
    Tang Y; Yao Y; Wei G
    Nanoscale; 2020 Feb; 12(5):3038-3049. PubMed ID: 31971529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly pathways and polymorphism in peptide-based nanostructures.
    Dudukovic NA; Hudson BC; Paravastu AK; Zukoski CF
    Nanoscale; 2018 Jan; 10(3):1508-1516. PubMed ID: 29303206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Schiff base nanoarchitectonics for supramolecular assembly of dipeptide as drug carriers.
    Wu A; Guo Y; Li X; Li Q; Chen G; Zang H; Li J
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):161-169. PubMed ID: 36240690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional architectures based on self-assembly of bio-inspired dipeptides: Structure modulation and its photoelectronic applications.
    Chen C; Liu K; Li J; Yan X
    Adv Colloid Interface Sci; 2015 Nov; 225():177-93. PubMed ID: 26365127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of self-assembled nanostructures for intracellular drug delivery from diphenylalanine analogues with rigid or flexible chemical linkers.
    Arul A; Rana P; Das K; Pan I; Mandal D; Stewart A; Maity B; Ghosh S; Das P
    Nanoscale Adv; 2021 Oct; 3(21):6176-6190. PubMed ID: 36133937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular and mesoscale mechanism for hierarchical self-assembly of dipeptide and porphyrin light-harvesting system.
    Liu K; Kang Y; Ma G; Möhwald H; Yan X
    Phys Chem Chem Phys; 2016 Jun; 18(25):16738-47. PubMed ID: 27270974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cation-based approach to morphological diversity of diphenylalanine dipeptide structures.
    Erdoğan H
    Soft Matter; 2021 May; 17(20):5221-5230. PubMed ID: 33949599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Kinetics, Thermodynamics and Mechanisms of Short Aromatic Peptide Self-Assembly.
    Mason TO; Buell AK
    Adv Exp Med Biol; 2019; 1174():61-112. PubMed ID: 31713197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Titanium dioxide nanoparticles embedded in assembled dipeptide hydrogels for microfluidic photodegradation.
    Li Y; Zheng T; Du Y; Zhao B; Patel HP; Boldt R; Auernhammer GK; Fery A; Li J; Thiele J
    J Colloid Interface Sci; 2024 Jan; 654(Pt A):405-412. PubMed ID: 37852026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of two-dimensional (2D) ordered microsphere aligned by supramolecular self-assembly of Formyl-azobenzene and dipeptide.
    Ma H; Li S; Wei Y; Jiang L; Li J
    J Colloid Interface Sci; 2018 Mar; 514():491-495. PubMed ID: 29289731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and Investigation of Backbone Modified Squaramide Dipeptide Self-Assembly.
    Shinde SD; Kulkarni N; Sahu B
    ACS Appl Bio Mater; 2023 Feb; 6(2):507-518. PubMed ID: 36716238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermally induced cyclization of
    Ziganshin MA; Larionov RA; Gerasimov AV; Ziganshina SA; Klimovitskii AE; Khayarov KR; Mukhametzyanov TA; Gorbatchuk VV
    J Pept Sci; 2019 Aug; 25(8):e3177. PubMed ID: 31317614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide self-assembly: thermodynamics and kinetics.
    Wang J; Liu K; Xing R; Yan X
    Chem Soc Rev; 2016 Oct; 45(20):5589-5604. PubMed ID: 27487936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase Separation Kinetics of Dynamically Self-Assembling Nanoparticles with Toggled Interactions.
    Sherman ZM; Rosenthal H; Swan JW
    Langmuir; 2018 Jan; 34(3):1029-1041. PubMed ID: 28926713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.