These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 27722369)

  • 1. Protein detection using tunable pores: resistive pulses and current rectification.
    Blundell EL; Mayne LJ; Lickorish M; Christie SD; Platt M
    Faraday Discuss; 2016 Dec; 193():487-505. PubMed ID: 27722369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A tunable nanopore sensor for the detection of metal ions using translocation velocity and biphasic pulses.
    Mayne LJ; Christie SD; Platt M
    Nanoscale; 2016 Dec; 8(45):19139-19147. PubMed ID: 27827506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle-by-Particle Charge Analysis of DNA-Modified Nanoparticles Using Tunable Resistive Pulse Sensing.
    Blundell EL; Vogel R; Platt M
    Langmuir; 2016 Feb; 32(4):1082-90. PubMed ID: 26757237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Design and Characterization of Multifunctional Aptamer Nanopore Sensors.
    Mayne L; Lin CY; Christie SDR; Siwy ZS; Platt M
    ACS Nano; 2018 May; 12(5):4844-4852. PubMed ID: 29718658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring aptamer-protein interactions using tunable resistive pulse sensing.
    Billinge ER; Broom M; Platt M
    Anal Chem; 2014 Jan; 86(2):1030-7. PubMed ID: 24380606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of conical nanopore diameter on ion current rectification.
    Kovarik ML; Zhou K; Jacobson SC
    J Phys Chem B; 2009 Dec; 113(49):15960-6. PubMed ID: 19908894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexed, label-free detection of biomarkers using aptamers and Tunable Resistive Pulse Sensing (AptaTRPS).
    Billinge ER; Platt M
    Biosens Bioelectron; 2015 Jun; 68():741-748. PubMed ID: 25682502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of Zeta Potential via Nanoparticle Translocation Velocities through a Tunable Nanopore: Using DNA-modified Particles as an Example.
    Blundell EL; Vogel R; Platt M
    J Vis Exp; 2016 Oct; (116):. PubMed ID: 27805605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direction Dependence of Resistive-Pulse Amplitude in Conically Shaped Mesopores.
    Qiu Y; Vlassiouk I; Chen Y; Siwy ZS
    Anal Chem; 2016 May; 88(9):4917-25. PubMed ID: 27049655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical Sensing and Chemoresponsive Pumping with Conical-Pore Polymeric Membranes.
    Bush SN; Volta TT; Martin CR
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32245285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport rectification in nanopores with outer membranes modified with surface charges and polyelectrolytes.
    Tagliazucchi M; Rabin Y; Szleifer I
    ACS Nano; 2013 Oct; 7(10):9085-97. PubMed ID: 24047263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic Current Rectification in a pH-Tunable Polyelectrolyte Brushes Functionalized Conical Nanopore: Effect of Salt Gradient.
    Lin JY; Lin CY; Hsu JP; Tseng S
    Anal Chem; 2016 Jan; 88(2):1176-87. PubMed ID: 26639406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-Induced Modulation of Ionic Concentrations and Ion Current Rectification in Mesopores with Highly Charged Pore Walls.
    Lin CY; Yeh LH; Siwy ZS
    J Phys Chem Lett; 2018 Jan; 9(2):393-398. PubMed ID: 29303587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Charged Particles Cause a Larger Current Blockage in Micropores Compared to Neutral Particles.
    Qiu Y; Lin CY; Hinkle P; Plett TS; Yang C; Chacko JV; Digman MA; Yeh LH; Hsu JP; Siwy ZS
    ACS Nano; 2016 Sep; 10(9):8413-22. PubMed ID: 27532683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle transport in conical-shaped nanopores.
    Lan WJ; Holden DA; Zhang B; White HS
    Anal Chem; 2011 May; 83(10):3840-7. PubMed ID: 21495727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle ζ-potential measurements using tunable resistive pulse sensing with variable pressure.
    Eldridge JA; Willmott GR; Anderson W; Vogel R
    J Colloid Interface Sci; 2014 Sep; 429():45-52. PubMed ID: 24935188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuously Tunable Ion Rectification and Conductance in Submicrochannels Stemming from Thermoresponsive Polymer Self-Assembly.
    Wu Y; Yang G; Lin M; Kong X; Mi L; Liu S; Chen G; Tian Y; Jiang L
    Angew Chem Int Ed Engl; 2019 Sep; 58(36):12481-12485. PubMed ID: 31317609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistive pulse sensing of analyte-induced multicomponent rod aggregation using tunable pores.
    Platt M; Willmott GR; Lee GU
    Small; 2012 Aug; 8(15):2436-44. PubMed ID: 22570187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real time monitoring of layer-by-layer polyelectrolyte deposition and bacterial enzyme detection in nanoporous anodized aluminum oxide.
    Krismastuti FS; Bayat H; Voelcker NH; Schönherr H
    Anal Chem; 2015 Apr; 87(7):3856-63. PubMed ID: 25739712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.