These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27722622)

  • 21. Trapping of Water Drops by Line-Shaped Defects on Superhydrophobic Surfaces.
    Olin P; Lindström SB; Wågberg L
    Langmuir; 2015 Jun; 31(23):6367-74. PubMed ID: 26010934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymptotic solutions for the relaxation of the contact line in the Wilhelmy-plate geometry: The contact line dissipation approach.
    Iliev S; Pesheva N; Iliev D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011607. PubMed ID: 20365384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Motion of liquid drops on surfaces induced by asymmetric vibration: role of contact angle hysteresis.
    Mettu S; Chaudhury MK
    Langmuir; 2011 Aug; 27(16):10327-33. PubMed ID: 21728326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.
    Ramos SM; Dias JF; Canut B
    J Colloid Interface Sci; 2015 Feb; 440():133-9. PubMed ID: 25460699
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water slug to drop and film transitions in gas-flow channels.
    Cheah MJ; Kevrekidis IG; Benziger JB
    Langmuir; 2013 Dec; 29(48):15122-36. PubMed ID: 24206393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the quasi-static relaxation of a drop in a combined model of dissipation.
    Iliev S; Pesheva N
    Langmuir; 2006 Feb; 22(4):1580-5. PubMed ID: 16460077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Effect of Slight Deformation on Thermocapillary-Driven Droplet Coalescence and Growth.
    Rother MA; Davis RH
    J Colloid Interface Sci; 1999 Jun; 214(2):297-318. PubMed ID: 10339370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relaxation of nonspherical sessile drops towards equilibrium.
    Nikolayev VS; Beysens DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046135. PubMed ID: 12005954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigations into the Complete Spreading Dynamics of a Viscoelastic Drop on a Spherical Substrate.
    Shyam S; Gaikwad HS; Ghalib Ahmed SA; Chakraborty B; Mondal PK
    Langmuir; 2021 Jan; 37(1):63-75. PubMed ID: 33356294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.
    Chen L; Bonaccurso E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022401. PubMed ID: 25215736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental characterization of the growth dynamics during capillarity-driven droplet generation.
    Sarma B; Shahapure V; Dalal A; Basu DN
    Phys Rev E; 2019 Jul; 100(1-1):013106. PubMed ID: 31499850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing the accuracy of contact angle measurements for sessile drops on liquid-repellent surfaces.
    Srinivasan S; McKinley GH; Cohen RE
    Langmuir; 2011 Nov; 27(22):13582-9. PubMed ID: 21923173
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Capillary Stokes drift: a new driving mechanism for mixing in AC-electrowetting.
    Mugele F; Staicu A; Bakker R; van den Ende D
    Lab Chip; 2011 Jun; 11(12):2011-6. PubMed ID: 21526233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A theory for the morphological dependence of wetting on a physically patterned solid surface.
    Shahraz A; Borhan A; Fichthorn KA
    Langmuir; 2012 Oct; 28(40):14227-37. PubMed ID: 22998115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-similar micron-size and nanosize drops of liquid generated by surface acoustic waves.
    Taller D; Go DB; Chang HC
    Phys Rev Lett; 2012 Nov; 109(22):224301. PubMed ID: 23368125
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels.
    Wu C; Xu X; Qian T
    J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy dissipation of a contact line moving on a nanotopographical defect.
    Franiatte S; Paredes G; Ondarçuhu T; Tordjeman P
    Soft Matter; 2024 May; 20(18):3798-3805. PubMed ID: 38646806
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lateral vibration of a water drop and its motion on a vibrating surface.
    Dong L; Chaudhury A; Chaudhury MK
    Eur Phys J E Soft Matter; 2006 Nov; 21(3):231-42. PubMed ID: 17205212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spreading, evaporation, and contact line dynamics of surfactant-laden microdrops.
    Gokhale SJ; Plawsky JL; Wayner PC
    Langmuir; 2005 Aug; 21(18):8188-97. PubMed ID: 16114921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.