BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 27722943)

  • 1. A synergistic coordination strategy for colorimetric sensing of chromium(III) ions using gold nanoparticles.
    Long D; Yu H
    Anal Bioanal Chem; 2016 Nov; 408(29):8551-8557. PubMed ID: 27722943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smartphone-enabled colorimetric visual quantification of highly hazardous trivalent chromium ions in environmental waters and catalytic reduction of p-nitroaniline by thiol-functionalized gold nanoparticles.
    Rajamanikandan R; Ilanchelian M; Ju H
    Chemosphere; 2023 Nov; 340():139838. PubMed ID: 37598944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recyclable colorimetric sensor of Cr
    Sang F; Li X; Zhang Z; Liu J; Chen G
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 193():109-116. PubMed ID: 29223455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanodiamonds conjugated to gold nanoparticles for colorimetric detection of clenbuterol and chromium(III) in urine.
    Shellaiah M; Simon T; Venkatesan P; Sun KW; Ko FH; Wu SP
    Mikrochim Acta; 2017 Dec; 185(1):74. PubMed ID: 29594526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective colorimetric detection of Cr(iii) and Cr(vi) using gallic acid capped gold nanoparticles.
    Dong C; Wu G; Wang Z; Ren W; Zhang Y; Shen Z; Li T; Wu A
    Dalton Trans; 2016 May; 45(20):8347-54. PubMed ID: 26606324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorimetric sensing of iodide ions based on unmodified gold nanoparticles and the distinctive antiaggregation-to-aggregation process.
    Sun X; Zhao Y; Cui X; Liu R; Yu M; Fei Q; Liu Q; Feng G; Shan H; Huan Y
    Luminescence; 2020 Nov; 35(7):1036-1042. PubMed ID: 32515169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colorimetric sensing of selenocystine using gold nanoparticles.
    Liu L; Wang X; Yang J; Bai Y
    Anal Biochem; 2017 Oct; 535():19-24. PubMed ID: 28739132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive colorimetric detection of K(I) using catalytically active gold nanoparticles triggered signal amplification.
    Chen Z; Tan L; Wang S; Zhang Y; Li Y
    Biosens Bioelectron; 2016 May; 79():749-57. PubMed ID: 26774090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label free colorimetric sensing of thiocyanate based on inducing aggregation of Tween 20-stabilized gold nanoparticles.
    Zhang Z; Zhang J; Qu C; Pan D; Chen Z; Chen L
    Analyst; 2012 Jun; 137(11):2682-6. PubMed ID: 22540118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colorimetric Detection of Ascorbic Acid Based on the Trigger of Gold Nanoparticles Aggregation by Cr(III) Reduced from Cr(VI).
    Sui N; Liu F; Li T; Wang L; Wang T; Liu M; Yu WW
    Anal Sci; 2017; 33(8):963-967. PubMed ID: 28794335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanoparticle-based colorimetric sensing of dipicolinic acid from complex samples.
    Baig MMF; Chen YC
    Anal Bioanal Chem; 2018 Feb; 410(6):1805-1815. PubMed ID: 29368149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A colorimetric sensing probe for chromium (III) ion based on domino like reaction.
    Song X; Chen X; Liang Z; Xu D; Liang Y
    Colloids Surf B Biointerfaces; 2022 Jul; 215():112494. PubMed ID: 35421818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple colorimetric sensing of trace bleomycin using unmodified gold nanoparticles.
    Li F; Feng Y; Zhao C; Tang B
    Biosens Bioelectron; 2011 Jul; 26(11):4628-31. PubMed ID: 21664122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blue-to-red colorimetric sensing strategy for Hg²⁺ and Ag⁺ via redox-regulated surface chemistry of gold nanoparticles.
    Lou T; Chen Z; Wang Y; Chen L
    ACS Appl Mater Interfaces; 2011 May; 3(5):1568-73. PubMed ID: 21469714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide.
    Fu X; Chen L; Li J
    Analyst; 2012 Aug; 137(16):3653-8. PubMed ID: 22741162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct colorimetric biosensing of mercury(II) ion based on aggregation of poly-(γ-glutamic acid)-functionalized gold nanoparticles.
    Guan H; Liu X; Wang W; Liang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():527-32. PubMed ID: 24291429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Colorimetric assay of perfluorooctanesulfonate based on gold nanoparticles].
    Cong YB; Zheng YH; Zheng L; Wu F; Tan KJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):189-92. PubMed ID: 25993846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A paper-based optical probe for chromium by using gold nanoparticles modified with 2,2'-thiodiacetic acid and smartphone camera readout.
    Faham S; Khayatian G; Golmohammadi H; Ghavami R
    Mikrochim Acta; 2018 Jul; 185(8):374. PubMed ID: 30006675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective colorimetric sensing of cysteine in aqueous solutions using silver nanoparticles in the presence of Cr³+.
    Ravindran A; Mani V; Chandrasekaran N; Mukherjee A
    Talanta; 2011 Jul; 85(1):533-40. PubMed ID: 21645737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A colorimetric nitrite detection system with excellent selectivity and high sensitivity based on Ag@Au nanoparticles.
    Li T; Li Y; Zhang Y; Dong C; Shen Z; Wu A
    Analyst; 2015 Feb; 140(4):1076-81. PubMed ID: 25564225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.