These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 27722975)
21. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning. Altini M; Penders J; Vullers R; Amft O IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168 [TBL] [Abstract][Full Text] [Related]
22. A smartphone-driven methodology for estimating physical activities and energy expenditure in free living conditions. Guidoux R; Duclos M; Fleury G; Lacomme P; Lamaudière N; Manenq PH; Paris L; Ren L; Rousset S J Biomed Inform; 2014 Dec; 52():271-8. PubMed ID: 25048352 [TBL] [Abstract][Full Text] [Related]
23. Utilizing Smartphone-Based Machine Learning in Medical Monitor Data Collection: Seven Segment Digit Recognition. Shenoy VN; Aalami OO AMIA Annu Symp Proc; 2017; 2017():1564-1570. PubMed ID: 29854226 [TBL] [Abstract][Full Text] [Related]
24. A Smartphone Lightweight Method for Human Activity Recognition Based on Information Theory. Bragança H; Colonna JG; Lima WS; Souto E Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230830 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants. Capela NA; Lemaire ED; Baddour N; Rudolf M; Goljar N; Burger H J Neuroeng Rehabil; 2016 Jan; 13():5. PubMed ID: 26792670 [TBL] [Abstract][Full Text] [Related]
26. Methods for Real-Time Prediction of the Mode of Travel Using Smartphone-Based GPS and Accelerometer Data. Martin BD; Addona V; Wolfson J; Adomavicius G; Fan Y Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28885550 [TBL] [Abstract][Full Text] [Related]
27. A general framework for sensor-based human activity recognition. Köping L; Shirahama K; Grzegorzek M Comput Biol Med; 2018 Apr; 95():248-260. PubMed ID: 29361267 [TBL] [Abstract][Full Text] [Related]
28. Validity of a Smartphone-Based Fall Detection Application on Different Phones Worn on a Belt or in a Trouser Pocket. Vermeulen J; Willard S; Aguiar B; De Witte LP Assist Technol; 2015; 27(1):18-23. PubMed ID: 26132221 [TBL] [Abstract][Full Text] [Related]
29. The Effect of Timing and Frequency of Push Notifications on Usage of a Smartphone-Based Stress Management Intervention: An Exploratory Trial. Morrison LG; Hargood C; Pejovic V; Geraghty AW; Lloyd S; Goodman N; Michaelides DT; Weston A; Musolesi M; Weal MJ; Yardley L PLoS One; 2017; 12(1):e0169162. PubMed ID: 28046034 [TBL] [Abstract][Full Text] [Related]
30. The application of EMD in activity recognition based on a single triaxial accelerometer. Liao M; Guo Y; Qin Y; Wang Y Biomed Mater Eng; 2015; 26 Suppl 1():S1533-9. PubMed ID: 26405917 [TBL] [Abstract][Full Text] [Related]
31. Atrial Fibrillation Detection via Accelerometer and Gyroscope of a Smartphone. Lahdenoja O; Hurnanen T; Iftikhar Z; Nieminen S; Knuutila T; Saraste A; Kiviniemi T; Vasankari T; Airaksinen J; Pankaala M; Koivisto T IEEE J Biomed Health Inform; 2018 Jan; 22(1):108-118. PubMed ID: 28391210 [TBL] [Abstract][Full Text] [Related]
32. A multi-sensor monitoring system of human physiology and daily activities. Doherty ST; Oh P Telemed J E Health; 2012 Apr; 18(3):185-92. PubMed ID: 22480300 [TBL] [Abstract][Full Text] [Related]
33. A Personalized Healthcare Monitoring System for Diabetic Patients by Utilizing BLE-Based Sensors and Real-Time Data Processing. Alfian G; Syafrudin M; Ijaz MF; Syaekhoni MA; Fitriyani NL; Rhee J Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29986473 [TBL] [Abstract][Full Text] [Related]
34. Supervised machine learning algorithms to diagnose stress for vehicle drivers based on physiological sensor signals. Barua S; Begum S; Ahmed MU Stud Health Technol Inform; 2015; 211():241-8. PubMed ID: 25980876 [TBL] [Abstract][Full Text] [Related]
35. Fitbit®: An accurate and reliable device for wireless physical activity tracking. Diaz KM; Krupka DJ; Chang MJ; Peacock J; Ma Y; Goldsmith J; Schwartz JE; Davidson KW Int J Cardiol; 2015 Apr; 185():138-40. PubMed ID: 25795203 [No Abstract] [Full Text] [Related]
36. "Snap-n-Eat": Food Recognition and Nutrition Estimation on a Smartphone. Zhang W; Yu Q; Siddiquie B; Divakaran A; Sawhney H J Diabetes Sci Technol; 2015 May; 9(3):525-33. PubMed ID: 25901024 [TBL] [Abstract][Full Text] [Related]
37. Design and test of a hybrid foot force sensing and GPS system for richer user mobility activity recognition. Zhang Z; Poslad S Sensors (Basel); 2013 Nov; 13(11):14918-53. PubMed ID: 24189333 [TBL] [Abstract][Full Text] [Related]
38. A comparison of activity classification in younger and older cohorts using a smartphone. Del Rosario MB; Wang K; Wang J; Liu Y; Brodie M; Delbaere K; Lovell NH; Lord SR; Redmond SJ Physiol Meas; 2014 Nov; 35(11):2269-86. PubMed ID: 25340659 [TBL] [Abstract][Full Text] [Related]
39. Remote Health Monitoring Outcome Success Prediction Using Baseline and First Month Intervention Data. Alshurafa N; Sideris C; Pourhomayoun M; Kalantarian H; Sarrafzadeh M; Eastwood JA IEEE J Biomed Health Inform; 2017 Mar; 21(2):507-514. PubMed ID: 26780823 [TBL] [Abstract][Full Text] [Related]
40. Human activity classification with inertial sensors. Silva J; Monteiro M; Sousa F Stud Health Technol Inform; 2014; 200():101-4. PubMed ID: 24851971 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]