These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 27723161)

  • 1. Difference in the intratumoral distributions of extracellular-fluid and intravascular MR contrast agents in glioblastoma growth.
    Kim JH; Suh JY; Woo DC; Sung YS; Son WC; Choi YS; Pae SJ; Kim JK
    NMR Biomed; 2016 Dec; 29(12):1688-1699. PubMed ID: 27723161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous evaluation of vascular morphology, blood volume and transvascular permeability using SPION-based, dual-contrast MRI: imaging optimization and feasibility test.
    Kwon HJ; Shim WH; Cho G; Cho HJ; Jung HS; Lee CK; Lee YS; Baek JH; Kim EJ; Suh JY; Sung YS; Woo DC; Kim YR; Kim JK
    NMR Biomed; 2015 Jun; 28(6):624-32. PubMed ID: 25865029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal heterogeneity of tumor vasculature during tumor growth and antiangiogenic treatment: MRI assessment using permeability and blood volume parameters.
    Kim C; Suh JY; Heo C; Lee CK; Shim WH; Park BW; Cho G; Lee DW; Woo DC; Kim SY; Kim YJ; Bae DJ; Kim JK
    Cancer Med; 2018 Aug; 7(8):3921-3934. PubMed ID: 29983002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UTE-ΔR2 -ΔR2 * combined MR whole-brain angiogram using dual-contrast superparamagnetic iron oxide nanoparticles.
    Jung HS; Jin SH; Cho JH; Han SH; Lee DK; Cho H
    NMR Biomed; 2016 Jun; 29(6):690-701. PubMed ID: 27061076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of tumor angiogenesis in rat brain using iron-based vessel size index MRI in combination with gadolinium-based dynamic contrast-enhanced MRI.
    Beaumont M; Lemasson B; Farion R; Segebarth C; Rémy C; Barbier EL
    J Cereb Blood Flow Metab; 2009 Oct; 29(10):1714-26. PubMed ID: 19584891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs).
    Shevtsov M; Nikolaev B; Marchenko Y; Yakovleva L; Skvortsov N; Mazur A; Tolstoy P; Ryzhov V; Multhoff G
    Int J Nanomedicine; 2018; 13():1471-1482. PubMed ID: 29559776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theranostic Application of Mixed Gold and Superparamagnetic Iron Oxide Nanoparticle Micelles in Glioblastoma Multiforme.
    Sun L; Joh DY; Al-Zaki A; Stangl M; Murty S; Davis JJ; Baumann BC; Alonso-Basanta M; Kaol GD; Tsourkas A; Dorsey JF
    J Biomed Nanotechnol; 2016 Feb; 12(2):347-56. PubMed ID: 27305768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of DCE-MRI parameters for brain tumors through implementation of physiologically-based pharmacokinetic model approaches for Gd-DOTA.
    Spanakis M; Kontopodis E; Van Cauter S; Sakkalis V; Marias K
    J Pharmacokinet Pharmacodyn; 2016 Oct; 43(5):529-47. PubMed ID: 27647272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic analysis of superparamagnetic iron oxide nanoparticles in the liver of body-temperature-controlled mice using dynamic susceptibility contrast magnetic resonance imaging and an empirical mathematical model.
    Murase K; Assanai P; Takata H; Matsumoto N; Saito S; Nishiura M
    Magn Reson Imaging; 2015 Jun; 33(5):600-10. PubMed ID: 25683514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative assessment of uptake and distribution of iron oxide particles (NC100150) in human melanoma xenografts by contrast-enhanced MRI.
    Graff BA; Vangberg L; Rofstad EK
    Magn Reson Med; 2004 Apr; 51(4):727-35. PubMed ID: 15065245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Contrast-Enhanced MRI Using a Macromolecular MR Contrast Agent (P792): Evaluation of Antivascular Drug Effect in a Rabbit VX2 Liver Tumor Model.
    Park HS; Han JK; Lee JM; Kim YI; Woo S; Yoon JH; Choi JY; Choi BI
    Korean J Radiol; 2015; 16(5):1029-37. PubMed ID: 26357497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain tumor enhancement in magnetic resonance imaging at 3 tesla: intraindividual comparison of two high relaxivity macromolecular contrast media with a standard extracellular gd-chelate in a rat brain tumor model.
    Fries P; Runge VM; Bücker A; Schürholz H; Reith W; Robert P; Jackson C; Lanz T; Schneider G
    Invest Radiol; 2009 Apr; 44(4):200-6. PubMed ID: 19300099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The temporal correlation of dynamic contrast-enhanced magnetic resonance imaging with tumor angiogenesis in a murine glioblastoma model.
    Veeravagu A; Hou LC; Hsu AR; Cai W; Greve JM; Chen X; Tse V
    Neurol Res; 2008 Nov; 30(9):952-9. PubMed ID: 18662497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiparametric characterization of response to anti-angiogenic therapy using USPIO contrast-enhanced MRI in combination with dynamic contrast-enhanced MRI.
    Kim J; Kim E; Euceda LR; Meyer DE; Langseth K; Bathen TF; Moestue SA; Huuse EM
    J Magn Reson Imaging; 2018 Jun; 47(6):1589-1600. PubMed ID: 29205621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive Imaging of Liposomal Delivery of Superparamagnetic Iron Oxide Nanoparticles to Orthotopic Human Breast Tumor in Mice.
    Kato Y; Zhu W; Backer MV; Neoh CC; Hapuarachchige S; Sarkar SK; Backer JM; Artemov D
    Pharm Res; 2015 Nov; 32(11):3746-3755. PubMed ID: 26078000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PTK787/ZK222584, a tyrosine kinase inhibitor of vascular endothelial growth factor receptor, reduces uptake of the contrast agent GdDOTA by murine orthotopic B16/BL6 melanoma tumours and inhibits their growth in vivo.
    Rudin M; McSheehy PM; Allegrini PR; Rausch M; Baumann D; Becquet M; Brecht K; Brueggen J; Ferretti S; Schaeffer F; Schnell C; Wood J
    NMR Biomed; 2005 Aug; 18(5):308-21. PubMed ID: 15918178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors.
    Shevtsov MA; Nikolaev BP; Yakovleva LY; Marchenko YY; Dobrodumov AV; Mikhrina AL; Martynova MG; Bystrova OA; Yakovenko IV; Ischenko AM
    Int J Nanomedicine; 2014; 9():273-87. PubMed ID: 24421639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid-Steady-State-T1 signal modeling during contrast agent extravasation: toward tumor blood volume quantification without requiring the arterial input function.
    Sarraf M; Perles-Barbacaru AT; Nissou MF; van der Sanden B; Berger F; Lahrech H
    Magn Reson Med; 2015 Mar; 73(3):1005-14. PubMed ID: 24733739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo magnetic resonance imaging tracking of C6 glioma cells labeled with superparamagnetic iron oxide nanoparticles.
    Mamani JB; Malheiros JM; Cardoso EF; Tannús A; Silveira PH; Gamarra LF
    Einstein (Sao Paulo); 2012; 10(2):164-70. PubMed ID: 23052451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-angiogenic Effects of Bumetanide Revealed by DCE-MRI with a Biodegradable Macromolecular Contrast Agent in a Colon Cancer Model.
    Malamas AS; Jin E; Zhang Q; Haaga J; Lu ZR
    Pharm Res; 2015 Sep; 32(9):3029-43. PubMed ID: 25840948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.