These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27723203)

  • 41. Organoboron chemistry comes to light: recent advances in photoinduced synthetic approaches to organoboron compounds.
    Nguyen VD; Nguyen VT; Jin S; Dang HT; Larionov OV
    Tetrahedron; 2019 Feb; 75(5):584-602. PubMed ID: 31564756
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct asymmetric Michael addition of thioether-based aryl sulfanyl-propan-2-one to nitroalkenes catalyzed by a chiral amine-thiourea bifunctional organocatalyst.
    Jiang X; Zhang B; Zhang Y; Lin L; Yan W; Wang R
    Chirality; 2010 Jul; 22(7):625-34. PubMed ID: 20143410
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of β-fluoroamines by Lewis base catalyzed hydrofluorination of aziridines.
    Kalow JA; Schmitt DE; Doyle AG
    J Org Chem; 2012 Apr; 77(8):4177-83. PubMed ID: 22489747
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Activation of diboron reagents with Brønsted bases and alcohols: an experimental and theoretical perspective of the organocatalytic boron conjugate addition reaction.
    Pubill-Ulldemolins C; Bonet A; Bo C; Gulyás H; Fernández E
    Chemistry; 2012 Jan; 18(4):1121-6. PubMed ID: 22170418
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rhodium-catalysed syn-carboamination of alkenes via a transient directing group.
    Piou T; Rovis T
    Nature; 2015 Nov; 527(7576):86-90. PubMed ID: 26503048
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design of Modified Amine Transfer Reagents Allows the Synthesis of α-Chiral Secondary Amines via CuH-Catalyzed Hydroamination.
    Niu D; Buchwald SL
    J Am Chem Soc; 2015 Aug; 137(30):9716-21. PubMed ID: 26144542
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metal-catalyzed reactions of diborons for synthesis of organoboron compounds.
    Ishiyama T; Miyaura N
    Chem Rec; 2004; 3(5):271-80. PubMed ID: 14762827
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Palladium-catalyzed enantioselective diboration of prochiral allenes.
    Pelz NF; Woodward AR; Burks HE; Sieber JD; Morken JP
    J Am Chem Soc; 2004 Dec; 126(50):16328-9. PubMed ID: 15600327
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Applications of Selenonium Cations as Lewis Acids in Organocatalytic Reactions.
    He X; Wang X; Tse YS; Ke Z; Yeung YY
    Angew Chem Int Ed Engl; 2018 Sep; 57(39):12869-12873. PubMed ID: 30084241
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel amine-catalysed hydroalkoxylation reactions of activated alkenes and alkynes.
    Murtagh JE; McCooey SH; Connon SJ
    Chem Commun (Camb); 2005 Jan; (2):227-9. PubMed ID: 15724194
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mixed diboration of alkenes in a metal-free context.
    Miralles N; Cid J; Cuenca AB; Carbó JJ; Fernández E
    Chem Commun (Camb); 2015 Jan; 51(9):1693-6. PubMed ID: 25516920
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enantioselective epoxidation of electron-deficient olefins: an organocatalytic approach.
    Weiss KM; Tsogoeva SB
    Chem Rec; 2011 Feb; 11(1):18-39. PubMed ID: 21308970
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Highly enantioselective organocatalytic oxidative kinetic resolution of secondary alcohols using chiral alkoxyamines as precatalysts: catalyst structure, active species, and substrate scope.
    Murakami K; Sasano Y; Tomizawa M; Shibuya M; Kwon E; Iwabuchi Y
    J Am Chem Soc; 2014 Dec; 136(50):17591-600. PubMed ID: 25412147
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Low-oxidation state indium-catalyzed C-C bond formation.
    Schneider U; Kobayashi S
    Acc Chem Res; 2012 Aug; 45(8):1331-44. PubMed ID: 22626010
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Iron-catalyzed diboration and carboboration of alkynes.
    Nakagawa N; Hatakeyama T; Nakamura M
    Chemistry; 2015 Mar; 21(11):4257-61. PubMed ID: 25631242
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Organocatalytic Site-Selective Acylation of Carbohydrates and Polyol Compounds.
    Ueda Y; Kawabata T
    Top Curr Chem; 2016; 372():203-32. PubMed ID: 26486138
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanistic Basis for Regioselection and Regiodivergence in Nickel-Catalyzed Reductive Couplings.
    Jackson EP; Malik HA; Sormunen GJ; Baxter RD; Liu P; Wang H; Shareef AR; Montgomery J
    Acc Chem Res; 2015 Jun; 48(6):1736-45. PubMed ID: 25965694
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Broadening the scope of group 4 hydroamination catalysis using a tethered ureate ligand.
    Leitch DC; Payne PR; Dunbar CR; Schafer LL
    J Am Chem Soc; 2009 Dec; 131(51):18246-7. PubMed ID: 19994887
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct organocatalytic asymmetric heterodomino reactions: the Knoevenagel/Diels-Alder/epimerization sequence for the highly diastereoselective synthesis of symmetrical and nonsymmetrical synthons of benzoannelated centropolyquinanes.
    Ramachary DB; Anebouselvy K; Chowdari NS; Barbas CF
    J Org Chem; 2004 Sep; 69(18):5838-49. PubMed ID: 15373469
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Undeniable Confirmation of the syn-Addition Mechanism for Metal-Free Diboration by Using the Crystalline Sponge Method.
    Cuenca AB; Zigon N; Duplan V; Hoshino M; Fujita M; Fernández E
    Chemistry; 2016 Mar; 22(14):4723-6. PubMed ID: 26840193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.