These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 27723249)

  • 1. Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives.
    Jiménez-Díaz L; Caballero A; Pérez-Hernández N; Segura A
    Microb Biotechnol; 2017 Jan; 10(1):103-124. PubMed ID: 27723249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renewable jet fuel.
    Kallio P; Pásztor A; Akhtar MK; Jones PR
    Curr Opin Biotechnol; 2014 Apr; 26():50-5. PubMed ID: 24679258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of poplar biomass into high-energy density tricyclic sesquiterpene jet fuel blendstocks.
    Geiselman GM; Kirby J; Landera A; Otoupal P; Papa G; Barcelos C; Sundstrom ER; Das L; Magurudeniya HD; Wehrs M; Rodriguez A; Simmons BA; Magnuson JK; Mukhopadhyay A; Lee TS; George A; Gladden JM
    Microb Cell Fact; 2020 Nov; 19(1):208. PubMed ID: 33183275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Development of bio-jet fuel production technology: a review].
    Wang S; Yang H; Yan R; Fu Z; Zhao J; Tao Z
    Sheng Wu Gong Cheng Xue Bao; 2022 Jul; 38(7):2477-2488. PubMed ID: 35871618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing catalysis conditions to decrease aromatic hydrocarbons and increase alkanes for improving jet biofuel quality.
    Cheng J; Li T; Huang R; Zhou J; Cen K
    Bioresour Technol; 2014 Apr; 158():378-82. PubMed ID: 24656484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Progress and prospect of bio-jet fuels industry in domestic and overseas].
    Qiao K; Fu J; Zhou F; Ma H
    Sheng Wu Gong Cheng Xue Bao; 2016 Oct; 32(10):1309-1321. PubMed ID: 29027442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic biology for microbial production of lipid-based biofuels.
    d'Espaux L; Mendez-Perez D; Li R; Keasling JD
    Curr Opin Chem Biol; 2015 Dec; 29():58-65. PubMed ID: 26479184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges of the utilization of wood polymers: how can they be overcome?
    Pu Y; Kosa M; Kalluri UC; Tuskan GA; Ragauskas AJ
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1525-36. PubMed ID: 21796383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.
    Budsberg E; Crawford JT; Morgan H; Chin WS; Bura R; Gustafson R
    Biotechnol Biofuels; 2016; 9():170. PubMed ID: 27525039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent extraction and characterization of
    Redda ZT; Laß-Seyoum A; Yimam A; Barz M; Jabasingh SA
    Biomass Convers Biorefin; 2022 Nov; ():1-20. PubMed ID: 36406949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkane production from biomass: chemo-, bio- and integrated catalytic approaches.
    Deneyer A; Renders T; Van Aelst J; Van den Bosch S; Gabriëls D; Sels BF
    Curr Opin Chem Biol; 2015 Dec; 29():40-8. PubMed ID: 26360875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From fields to fuels: recent advances in the microbial production of biofuels.
    Kung Y; Runguphan W; Keasling JD
    ACS Synth Biol; 2012 Nov; 1(11):498-513. PubMed ID: 23656227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid thermochemical processing: fermentation of pyrolysis-derived bio-oil.
    Jarboe LR; Wen Z; Choi D; Brown RC
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1519-23. PubMed ID: 21789490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial-based motor fuels: science and technology.
    Wackett LP
    Microb Biotechnol; 2008 May; 1(3):211-25. PubMed ID: 21261841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts.
    Liu S; Zhu Q; Guan Q; He L; Li W
    Bioresour Technol; 2015 May; 183():93-100. PubMed ID: 25725407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic Deoxygenation of the Oil and Biodiesel of Licuri (
    Araújo PHM; Maia AS; Cordeiro AMTM; Gondim AD; Santos NA
    ACS Omega; 2019 Oct; 4(14):15849-15855. PubMed ID: 31592170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refining and blending of aviation turbine fuels.
    White RD
    Drug Chem Toxicol; 1999 Feb; 22(1):143-53. PubMed ID: 10189575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leveraging microbial biosynthetic pathways for the generation of 'drop-in' biofuels.
    Zargar A; Bailey CB; Haushalter RW; Eiben CB; Katz L; Keasling JD
    Curr Opin Biotechnol; 2017 Jun; 45():156-163. PubMed ID: 28427010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer-Tropsch fuels.
    Lobo P; Hagen DE; Whitefield PD
    Environ Sci Technol; 2011 Dec; 45(24):10744-9. PubMed ID: 22043875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable.
    Fu WJ; Chi Z; Ma ZC; Zhou HX; Liu GL; Lee CF; Chi ZM
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7481-94. PubMed ID: 26231137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.