These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Long-term contractile activity and thyroid hormone supplementation produce engineered rat myocardium with adult-like structure and function. Jackman C; Li H; Bursac N Acta Biomater; 2018 Sep; 78():98-110. PubMed ID: 30086384 [TBL] [Abstract][Full Text] [Related]
3. Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Dahlmann J; Krause A; Möller L; Kensah G; Möwes M; Diekmann A; Martin U; Kirschning A; Gruh I; Dräger G Biomaterials; 2013 Jan; 34(4):940-51. PubMed ID: 23141898 [TBL] [Abstract][Full Text] [Related]
5. Functional engineered human cardiac patches prepared from nature's platform improve heart function after acute myocardial infarction. Wang Q; Yang H; Bai A; Jiang W; Li X; Wang X; Mao Y; Lu C; Qian R; Guo F; Ding T; Chen H; Chen S; Zhang J; Liu C; Sun N Biomaterials; 2016 Oct; 105():52-65. PubMed ID: 27509303 [TBL] [Abstract][Full Text] [Related]
6. Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro. Kensah G; Roa Lara A; Dahlmann J; Zweigerdt R; Schwanke K; Hegermann J; Skvorc D; Gawol A; Azizian A; Wagner S; Maier LS; Krause A; Dräger G; Ochs M; Haverich A; Gruh I; Martin U Eur Heart J; 2013 Apr; 34(15):1134-46. PubMed ID: 23103664 [TBL] [Abstract][Full Text] [Related]
7. Toward improved myocardial maturity in an organ-on-chip platform with immature cardiac myocytes. Sheehy SP; Grosberg A; Qin P; Behm DJ; Ferrier JP; Eagleson MA; Nesmith AP; Krull D; Falls JG; Campbell PH; McCain ML; Willette RN; Hu E; Parker KK Exp Biol Med (Maywood); 2017 Nov; 242(17):1643-1656. PubMed ID: 28343439 [TBL] [Abstract][Full Text] [Related]
8. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Zhang D; Shadrin IY; Lam J; Xian HQ; Snodgrass HR; Bursac N Biomaterials; 2013 Jul; 34(23):5813-20. PubMed ID: 23642535 [TBL] [Abstract][Full Text] [Related]
9. Progressive stretch enhances growth and maturation of 3D stem-cell-derived myocardium. Lu K; Seidel T; Cao-Ehlker X; Dorn T; Batcha AMN; Schneider CM; Semmler M; Volk T; Moretti A; Dendorfer A; Tomasi R Theranostics; 2021; 11(13):6138-6153. PubMed ID: 33995650 [TBL] [Abstract][Full Text] [Related]
11. Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue. Li Y; Asfour H; Bursac N Acta Biomater; 2017 Jun; 55():120-130. PubMed ID: 28455218 [TBL] [Abstract][Full Text] [Related]
12. Force characteristics of in vivo tissue-engineered myocardial constructs using varying cell seeding densities. Birla R; Dhawan V; Huang YC; Lytle I; Tiranathanagul K; Brown D Artif Organs; 2008 Sep; 32(9):684-91. PubMed ID: 18684210 [TBL] [Abstract][Full Text] [Related]
13. Developmental stage-dependent effects of cardiac fibroblasts on function of stem cell-derived engineered cardiac tissues. Liau B; Jackman CP; Li Y; Bursac N Sci Rep; 2017 Feb; 7():42290. PubMed ID: 28181589 [TBL] [Abstract][Full Text] [Related]
14. Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue. Ruan JL; Tulloch NL; Razumova MV; Saiget M; Muskheli V; Pabon L; Reinecke H; Regnier M; Murry CE Circulation; 2016 Nov; 134(20):1557-1567. PubMed ID: 27737958 [TBL] [Abstract][Full Text] [Related]
15. Optimizing cell seeding and retention in a three-dimensional bioengineered cardiac ventricle: The two-stage cellularization model. Patel NM; Yazdi IK; Tasciotti E; Birla RK Biotechnol Bioeng; 2016 Oct; 113(10):2275-85. PubMed ID: 27071026 [TBL] [Abstract][Full Text] [Related]
16. Functional maturation of human pluripotent stem cell derived cardiomyocytes in vitro--correlation between contraction force and electrophysiology. Ribeiro MC; Tertoolen LG; Guadix JA; Bellin M; Kosmidis G; D'Aniello C; Monshouwer-Kloots J; Goumans MJ; Wang YL; Feinberg AW; Mummery CL; Passier R Biomaterials; 2015 May; 51():138-150. PubMed ID: 25771005 [TBL] [Abstract][Full Text] [Related]
17. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering. LaNasa SM; Bryant SJ Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460 [TBL] [Abstract][Full Text] [Related]
18. Microfluidic patterning for fabrication of contractile cardiac organoids. Khademhosseini A; Eng G; Yeh J; Kucharczyk PA; Langer R; Vunjak-Novakovic G; Radisic M Biomed Microdevices; 2007 Apr; 9(2):149-57. PubMed ID: 17146728 [TBL] [Abstract][Full Text] [Related]
19. A photopolymerizable hydrogel for 3-D culture of human embryonic stem cell-derived cardiomyocytes and rat neonatal cardiac cells. Shapira-Schweitzer K; Habib M; Gepstein L; Seliktar D J Mol Cell Cardiol; 2009 Feb; 46(2):213-24. PubMed ID: 19027751 [TBL] [Abstract][Full Text] [Related]
20. Functional and developmental properties of human embryonic stem cells-derived cardiomyocytes. Binah O; Dolnikov K; Sadan O; Shilkrut M; Zeevi-Levin N; Amit M; Danon A; Itskovitz-Eldor J J Electrocardiol; 2007; 40(6 Suppl):S192-6. PubMed ID: 17993321 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]