These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Xue T; Cho HC; Akar FG; Tsang SY; Jones SP; Marbán E; Tomaselli GF; Li RA Circulation; 2005 Jan; 111(1):11-20. PubMed ID: 15611367 [TBL] [Abstract][Full Text] [Related]
24. Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. Hirt MN; Boeddinghaus J; Mitchell A; Schaaf S; Börnchen C; Müller C; Schulz H; Hubner N; Stenzig J; Stoehr A; Neuber C; Eder A; Luther PK; Hansen A; Eschenhagen T J Mol Cell Cardiol; 2014 Sep; 74():151-61. PubMed ID: 24852842 [TBL] [Abstract][Full Text] [Related]
25. Design and fabrication of heart muscle using scaffold-based tissue engineering. Blan NR; Birla RK J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281 [TBL] [Abstract][Full Text] [Related]
26. Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Shadrin IY; Allen BW; Qian Y; Jackman CP; Carlson AL; Juhas ME; Bursac N Nat Commun; 2017 Nov; 8(1):1825. PubMed ID: 29184059 [TBL] [Abstract][Full Text] [Related]
27. Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Shimizu T; Sekine H; Isoi Y; Yamato M; Kikuchi A; Okano T Tissue Eng; 2006 Mar; 12(3):499-507. PubMed ID: 16579683 [TBL] [Abstract][Full Text] [Related]
28. Controlling the structural and functional anisotropy of engineered cardiac tissues. Bian W; Jackman CP; Bursac N Biofabrication; 2014 Jun; 6(2):024109-24109. PubMed ID: 24717534 [TBL] [Abstract][Full Text] [Related]
29. Human placenta hydrogel reduces scarring in a rat model of cardiac ischemia and enhances cardiomyocyte and stem cell cultures. Francis MP; Breathwaite E; Bulysheva AA; Varghese F; Rodriguez RU; Dutta S; Semenov I; Ogle R; Huber A; Tichy AM; Chen S; Zemlin C Acta Biomater; 2017 Apr; 52():92-104. PubMed ID: 27965171 [TBL] [Abstract][Full Text] [Related]
30. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Shimizu T; Yamato M; Isoi Y; Akutsu T; Setomaru T; Abe K; Kikuchi A; Umezu M; Okano T Circ Res; 2002 Feb; 90(3):e40. PubMed ID: 11861428 [TBL] [Abstract][Full Text] [Related]
31. Engineered cardiac tissues for in vitro assessment of contractile function and repair mechanisms. Kim DE; Lee EJ; Martens TP; Kara R; Chaudhry HW; Itescu S; Costa KD Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():849-52. PubMed ID: 17946863 [TBL] [Abstract][Full Text] [Related]
32. Bioengineering an electro-mechanically functional miniature ventricular heart chamber from human pluripotent stem cells. Li RA; Keung W; Cashman TJ; Backeris PC; Johnson BV; Bardot ES; Wong AOT; Chan PKW; Chan CWY; Costa KD Biomaterials; 2018 May; 163():116-127. PubMed ID: 29459321 [TBL] [Abstract][Full Text] [Related]
33. Single-Cell Transcriptomics of Engineered Cardiac Tissues From Patient-Specific Induced Pluripotent Stem Cell-Derived Cardiomyocytes Reveals Abnormal Developmental Trajectory and Intrinsic Contractile Defects in Hypoplastic Right Heart Syndrome. Lam YY; Keung W; Chan CH; Geng L; Wong N; Brenière-Letuffe D; Li RA; Cheung YF J Am Heart Assoc; 2020 Oct; 9(20):e016528. PubMed ID: 33059525 [TBL] [Abstract][Full Text] [Related]
34. Laser-Etched Designs for Molding Hydrogel-Based Engineered Tissues. Munarin F; Kaiser NJ; Kim TY; Choi BR; Coulombe KLK Tissue Eng Part C Methods; 2017 May; 23(5):311-321. PubMed ID: 28457187 [TBL] [Abstract][Full Text] [Related]
35. Adult human cardiac stem cell supplementation effectively increases contractile function and maturation in human engineered cardiac tissues. Murphy JF; Mayourian J; Stillitano F; Munawar S; Broughton KM; Agullo-Pascual E; Sussman MA; Hajjar RJ; Costa KD; Turnbull IC Stem Cell Res Ther; 2019 Dec; 10(1):373. PubMed ID: 31801634 [TBL] [Abstract][Full Text] [Related]
36. Investigation into the effects of varying frequency of mechanical stimulation in a cycle-by-cycle manner on engineered cardiac construct function. Morgan KY; Black LD J Tissue Eng Regen Med; 2017 Feb; 11(2):342-353. PubMed ID: 24916022 [TBL] [Abstract][Full Text] [Related]
37. Biophysical stimulation for Korolj A; Wang EY; Civitarese RA; Radisic M Clin Sci (Lond); 2017 Jul; 131(13):1393-1404. PubMed ID: 28645929 [TBL] [Abstract][Full Text] [Related]
38. Optimizing a spontaneously contracting heart tissue patch with rat neonatal cardiac cells on fibrin gel. Tao ZW; Mohamed M; Hogan M; Gutierrez L; Birla RK J Tissue Eng Regen Med; 2017 Jan; 11(1):153-163. PubMed ID: 24771636 [TBL] [Abstract][Full Text] [Related]
39. Engineered heart slices for electrophysiological and contractile studies. Blazeski A; Kostecki GM; Tung L Biomaterials; 2015 Jul; 55():119-28. PubMed ID: 25934457 [TBL] [Abstract][Full Text] [Related]
40. Contractile force generation by 3D hiPSC-derived cardiac tissues is enhanced by rapid establishment of cellular interconnection in matrix with muscle-mimicking stiffness. Lee S; Serpooshan V; Tong X; Venkatraman S; Lee M; Lee J; Chirikian O; Wu JC; Wu SM; Yang F Biomaterials; 2017 Jul; 131():111-120. PubMed ID: 28384492 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]