BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27723749)

  • 1. SF2312 is a natural phosphonate inhibitor of enolase.
    Leonard PG; Satani N; Maxwell D; Lin YH; Hammoudi N; Peng Z; Pisaneschi F; Link TM; Lee GR; Sun D; Prasad BAB; Di Francesco ME; Czako B; Asara JM; Wang YA; Bornmann W; DePinho RA; Muller FL
    Nat Chem Biol; 2016 Dec; 12(12):1053-1058. PubMed ID: 27723749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 3
    Pisaneschi F; Lin YH; Leonard PG; Satani N; Yan VC; Hammoudi N; Raghavan S; Link TM; K Georgiou D; Czako B; Muller FL
    Molecules; 2019 Jul; 24(13):. PubMed ID: 31324042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional and structural basis of E. coli enolase inhibition by SF2312: a mimic of the carbanion intermediate.
    Krucinska J; Lombardo MN; Erlandsen H; Hazeen A; Duay SS; Pattis JG; Robinson VL; May ER; Wright DL
    Sci Rep; 2019 Nov; 9(1):17106. PubMed ID: 31745118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the bis divalent cation complex with phosphonoacetohydroxamate at the active site of enolase.
    Poyner RR; Reed GH
    Biochemistry; 1992 Aug; 31(31):7166-73. PubMed ID: 1322695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular docking of alpha-enolase to elucidate the promising candidates against Streptococcus pneumoniae infection.
    Hassan M; Baig AA; Attique SA; Abbas S; Khan F; Zahid S; Ain QU; Usman M; Simbak NB; Kamal MA; Yusof HA
    Daru; 2021 Jun; 29(1):73-84. PubMed ID: 33537864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chelation of serine 39 to Mg2+ latches a gate at the active site of enolase: structure of the bis(Mg2+) complex of yeast enolase and the intermediate analog phosphonoacetohydroxamate at 2.1-A resolution.
    Wedekind JE; Poyner RR; Reed GH; Rayment I
    Biochemistry; 1994 Aug; 33(31):9333-42. PubMed ID: 8049235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The catalytic Mn2+ sites in the enolase-inhibitor complex: crystallography, single-crystal EPR, and DFT calculations.
    Carmieli R; Larsen TM; Reed GH; Zein S; Neese F; Goldfarb D
    J Am Chem Soc; 2007 Apr; 129(14):4240-52. PubMed ID: 17367133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prodrugs of a 1-Hydroxy-2-oxopiperidin-3-yl Phosphonate Enolase Inhibitor for the Treatment of
    Yan VC; Pham CD; Ballato ES; Yang KL; Arthur K; Khadka S; Barekatain Y; Shrestha P; Tran T; Poral AH; Washington M; Raghavan S; Czako B; Pisaneschi F; Lin YH; Satani N; Hammoudi N; Ackroyd JJ; Georgiou DK; Millward SW; Muller FL
    J Med Chem; 2022 Oct; 65(20):13813-13832. PubMed ID: 36251833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro inhibition studies of coumarin derivatives on Bos taurus enolase and elucidating their interaction by molecular docking, molecular dynamics simulations and MMGB(PB)SA binding energy calculation.
    Sariyer E; Kocer S; Danis O; Turgut-Balik D
    Bioorg Chem; 2021 May; 110():104796. PubMed ID: 33799179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphonate-based irreversible inhibitors of human γ-glutamyl transpeptidase (GGT). GGsTop is a non-toxic and highly selective inhibitor with critical electrostatic interaction with an active-site residue Lys562 for enhanced inhibitory activity.
    Kamiyama A; Nakajima M; Han L; Wada K; Mizutani M; Tabuchi Y; Kojima-Yuasa A; Matsui-Yuasa I; Suzuki H; Fukuyama K; Watanabe B; Hiratake J
    Bioorg Med Chem; 2016 Nov; 24(21):5340-5352. PubMed ID: 27622749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase.
    Poyner RR; Larsen TM; Wong SW; Reed GH
    Arch Biochem Biophys; 2002 May; 401(2):155-63. PubMed ID: 12054465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An enolase inhibitor for the targeted treatment of ENO1-deleted cancers.
    Lin YH; Satani N; Hammoudi N; Yan VC; Barekatain Y; Khadka S; Ackroyd JJ; Georgiou DK; Pham CD; Arthur K; Maxwell D; Peng Z; Leonard PG; Czako B; Pisaneschi F; Mandal P; Sun Y; Zielinski R; Pando SC; Wang X; Tran T; Xu Q; Wu Q; Jiang Y; Kang Z; Asara JM; Priebe W; Bornmann W; Marszalek JR; DePinho RA; Muller FL
    Nat Metab; 2020 Dec; 2(12):1413-1426. PubMed ID: 33230295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ENOblock Does Not Inhibit the Activity of the Glycolytic Enzyme Enolase.
    Satani N; Lin YH; Hammoudi N; Raghavan S; Georgiou DK; Muller FL
    PLoS One; 2016; 11(12):e0168739. PubMed ID: 28030597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silencing of tachyzoite enolase 2 alters nuclear targeting of bradyzoite enolase 1 in Toxoplasma gondii.
    Holmes M; Liwak U; Pricop I; Wang X; Tomavo S; Ananvoranich S
    Microbes Infect; 2010 Jan; 12(1):19-27. PubMed ID: 19770069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 A resolution.
    Larsen TM; Wedekind JE; Rayment I; Reed GH
    Biochemistry; 1996 Apr; 35(14):4349-58. PubMed ID: 8605183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and Functional Studies of Bacterial Enolase, a Potential Target against Gram-Negative Pathogens.
    Krucinska J; Falcone E; Erlandsen H; Hazeen A; Lombardo MN; Estrada A; Robinson VL; Anderson AC; Wright DL
    Biochemistry; 2019 Mar; 58(9):1188-1197. PubMed ID: 30714720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico-based identification of human α-enolase inhibitors to block cancer cell growth metabolically.
    Lung J; Chen KL; Hung CH; Chen CC; Hung MS; Lin YC; Wu CY; Lee KD; Shih NY; Tsai YH
    Drug Des Devel Ther; 2017; 11():3281-3290. PubMed ID: 29180852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico prediction of a new lead compound targeting enolase of trypanosomatids through structure-based virtual screening and molecular dynamic studies.
    Vidhya VM; Lakshmi BS; Ponnuraj K
    J Mol Model; 2020 Jan; 26(2):23. PubMed ID: 31912304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction intermediate analogues for enolase.
    Anderson VE; Weiss PM; Cleland WW
    Biochemistry; 1984 Jun; 23(12):2779-86. PubMed ID: 6380574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphonate-containing inhibitors of tyrosine-specific protein kinases.
    Burke TR; Li ZH; Bolen JB; Marquez VE
    J Med Chem; 1991 May; 34(5):1577-81. PubMed ID: 2033582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.