BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

662 related articles for article (PubMed ID: 27723754)

  • 1. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells.
    Ma Y; Zhang J; Yin W; Zhang Z; Song Y; Chang X
    Nat Methods; 2016 Dec; 13(12):1029-1035. PubMed ID: 27723754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells.
    Hess GT; Frésard L; Han K; Lee CH; Li A; Cimprich KA; Montgomery SB; Bassik MC
    Nat Methods; 2016 Dec; 13(12):1036-1042. PubMed ID: 27798611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion.
    Shimatani Z; Kashojiya S; Takayama M; Terada R; Arazoe T; Ishii H; Teramura H; Yamamoto T; Komatsu H; Miura K; Ezura H; Nishida K; Ariizumi T; Kondo A
    Nat Biotechnol; 2017 May; 35(5):441-443. PubMed ID: 28346401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient RNA-guided base editing in mouse embryos.
    Kim K; Ryu SM; Kim ST; Baek G; Kim D; Lim K; Chung E; Kim S; Kim JS
    Nat Biotechnol; 2017 May; 35(5):435-437. PubMed ID: 28244995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic Modulation of RNA Splicing with a CRISPR-Guided Cytidine Deaminase.
    Yuan J; Ma Y; Huang T; Chen Y; Peng Y; Li B; Li J; Zhang Y; Song B; Sun X; Ding Q; Song Y; Chang X
    Mol Cell; 2018 Oct; 72(2):380-394.e7. PubMed ID: 30293782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion.
    Zong Y; Wang Y; Li C; Zhang R; Chen K; Ran Y; Qiu JL; Wang D; Gao C
    Nat Biotechnol; 2017 May; 35(5):438-440. PubMed ID: 28244994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases.
    Kim D; Lim K; Kim ST; Yoon SH; Kim K; Ryu SM; Kim JS
    Nat Biotechnol; 2017 May; 35(5):475-480. PubMed ID: 28398345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems.
    Nishida K; Arazoe T; Yachie N; Banno S; Kakimoto M; Tabata M; Mochizuki M; Miyabe A; Araki M; Hara KY; Shimatani Z; Kondo A
    Science; 2016 Sep; 353(6305):. PubMed ID: 27492474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53.
    Lawhorn IE; Ferreira JP; Wang CL
    PLoS One; 2014; 9(11):e113232. PubMed ID: 25398078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient targeted integration directed by short homology in zebrafish and mammalian cells.
    Wierson WA; Welker JM; Almeida MP; Mann CM; Webster DA; Torrie ME; Weiss TJ; Kambakam S; Vollbrecht MK; Lan M; McKeighan KC; Levey J; Ming Z; Wehmeier A; Mikelson CS; Haltom JA; Kwan KM; Chien CB; Balciunas D; Ekker SC; Clark KJ; Webber BR; Moriarity BS; Solin SL; Carlson DF; Dobbs DL; McGrail M; Essner J
    Elife; 2020 May; 9():. PubMed ID: 32412410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements.
    Thakore PI; D'Ippolito AM; Song L; Safi A; Shivakumar NK; Kabadi AM; Reddy TE; Crawford GE; Gersbach CA
    Nat Methods; 2015 Dec; 12(12):1143-9. PubMed ID: 26501517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in
    Yu S; Price MA; Wang Y; Liu Y; Guo Y; Ni X; Rosser SJ; Bi C; Wang M
    ACS Synth Biol; 2020 Jul; 9(7):1781-1789. PubMed ID: 32551562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted Base Editing with CRISPR-Deaminase in Tomato.
    Shimatani Z; Ariizumi T; Fujikura U; Kondo A; Ezura H; Nishida K
    Methods Mol Biol; 2019; 1917():297-307. PubMed ID: 30610645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T315I mutation of BCR-ABL1 into human Philadelphia chromosome-positive leukemia cell lines by homologous recombination using the CRISPR/Cas9 system.
    Tamai M; Inukai T; Kojika S; Abe M; Kagami K; Harama D; Shinohara T; Watanabe A; Oshiro H; Akahane K; Goi K; Sugihara E; Nakada S; Sugita K
    Sci Rep; 2018 Jul; 8(1):9966. PubMed ID: 29967475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex transcriptional modulation with orthogonal and inducible dCas9 regulators.
    Gao Y; Xiong X; Wong S; Charles EJ; Lim WA; Qi LS
    Nat Methods; 2016 Dec; 13(12):1043-1049. PubMed ID: 27776111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells.
    Sakuma T; Sakamoto T; Yamamoto T
    Methods Mol Biol; 2017; 1498():41-56. PubMed ID: 27709568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific targeting of a light activated dCas9-KillerRed fusion protein generates transient, localized regions of oxidative DNA damage.
    House NCM; Parasuram R; Layer JV; Price BD
    PLoS One; 2020; 15(12):e0237759. PubMed ID: 33332350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells.
    Deng W; Shi X; Tjian R; Lionnet T; Singer RH
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11870-5. PubMed ID: 26324940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Directed Gene Editing Catalyzes Precise Gene Segment Replacement
    Sansbury BM; Wagner AM; Tarcic G; Barth S; Nitzan E; Goldfus R; Vidne M; Kmiec EB
    CRISPR J; 2019 Apr; 2():121-132. PubMed ID: 30998096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal and Spatial Epigenome Editing Allows Precise Gene Regulation in Mammalian Cells.
    Kuscu C; Mammadov R; Czikora A; Unlu H; Tufan T; Fischer NL; Arslan S; Bekiranov S; Kanemaki M; Adli M
    J Mol Biol; 2019 Jan; 431(1):111-121. PubMed ID: 30098338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.