These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 27723959)
21. Dynamic wetting and spreading and the role of topography. McHale G; Newton MI; Shirtcliffe NJ J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886 [TBL] [Abstract][Full Text] [Related]
22. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Erbil HY; Cansoy CE Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435 [TBL] [Abstract][Full Text] [Related]
23. Stability of virtual air walls on micropallet arrays. Wang Y; Bachman M; Sims CE; Li GP; Allbritton NL Anal Chem; 2007 Sep; 79(18):7104-9. PubMed ID: 17705452 [TBL] [Abstract][Full Text] [Related]
24. Measurement of effective wetting area at hydrophobic solid-liquid interface. Zhang D; Takase S; Nagayama G J Colloid Interface Sci; 2021 Jun; 591():474-482. PubMed ID: 33640849 [TBL] [Abstract][Full Text] [Related]
25. Probing Liquid-Solid and Vapor-Liquid-Solid Interfaces of Hierarchical Surfaces Using High-Resolution Microscopy. Flynn Bolte KT; Balaraman RP; Jiao K; Tustison M; Kirkwood KS; Zhou C; Kohli P Langmuir; 2018 Mar; 34(12):3720-3730. PubMed ID: 29486565 [TBL] [Abstract][Full Text] [Related]
26. The wetting characteristics of aluminum droplets on rough surfaces with molecular dynamics simulations. Guan C; Lv X; Han Z; Chen C Phys Chem Chem Phys; 2020 Jan; 22(4):2361-2371. PubMed ID: 31934698 [TBL] [Abstract][Full Text] [Related]
27. Wetting transitions on rough surfaces revealed with captive bubble experiments. The role of surface energy. Moraila CL; Montes Ruiz-Cabello FJ; Cabrerizo-Vílchez M; Rodríguez-Valverde MÁ J Colloid Interface Sci; 2019 Mar; 539():448-456. PubMed ID: 30605814 [TBL] [Abstract][Full Text] [Related]
28. Progress in understanding wetting transitions on rough surfaces. Bormashenko E Adv Colloid Interface Sci; 2015 Aug; 222():92-103. PubMed ID: 24594103 [TBL] [Abstract][Full Text] [Related]
30. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M; Zheng Y; Zhai J; Jiang L Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162 [TBL] [Abstract][Full Text] [Related]
31. Control over wettability of polyethylene glycol surfaces using capillary lithography. Suh KY; Jon S Langmuir; 2005 Jul; 21(15):6836-41. PubMed ID: 16008394 [TBL] [Abstract][Full Text] [Related]
32. Beyond Wenzel and Cassie-Baxter: second-order effects on the wetting of rough surfaces. Hejazi V; Moghadam AD; Rohatgi P; Nosonovsky M Langmuir; 2014 Aug; 30(31):9423-9. PubMed ID: 25051526 [TBL] [Abstract][Full Text] [Related]
33. Topography versus chemistry - How can we control surface wetting? Lößlein SM; Mücklich F; Grützmacher PG J Colloid Interface Sci; 2022 Mar; 609():645-656. PubMed ID: 34839911 [TBL] [Abstract][Full Text] [Related]
34. Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions. Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T Soft Matter; 2015 May; 11(19):3806-11. PubMed ID: 25855128 [TBL] [Abstract][Full Text] [Related]
35. Following the wetting of one-dimensional photoactive surfaces. Macias-Montero M; Borras A; Alvarez R; Gonzalez-Elipe AR Langmuir; 2012 Oct; 28(42):15047-55. PubMed ID: 22998211 [TBL] [Abstract][Full Text] [Related]
36. Impact of air and water vapor environments on the hydrophobicity of surfaces. Weisensee PB; Neelakantan NK; Suslick KS; Jacobi AM; King WP J Colloid Interface Sci; 2015 Sep; 453():177-185. PubMed ID: 25985421 [TBL] [Abstract][Full Text] [Related]
37. Photoresponsive superhydrophobic surfaces for effective wetting control. Pan S; Guo R; Xu W Soft Matter; 2014 Dec; 10(45):9187-92. PubMed ID: 25322263 [TBL] [Abstract][Full Text] [Related]