These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 27723962)

  • 1. Simultaneous Transfer and Imaging of Latent Fingerprints Enabled by Interfacial Separation of Polydopamine Thin Film.
    Zhao L; Wang W; Hu W
    Anal Chem; 2016 Nov; 88(21):10357-10361. PubMed ID: 27723962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial Separation-Enabled All-Dry Approach for Simultaneous Visualization, Transfer, and Enhanced Raman Analysis of Latent Fingerprints.
    Zhao L; Huang X; Hu W
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37350-37356. PubMed ID: 28984124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterning of Metal Films on Arbitrary Substrates by Using Polydopamine as a UV-Sensitive Catalytic Layer for Electroless Deposition.
    Zhao L; Chen D; Hu W
    Langmuir; 2016 May; 32(21):5285-90. PubMed ID: 27181020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle Size-Tunable Polydopamine Nanoparticles for Optical and Electrochemical Imaging of Latent Fingerprints on Various Surfaces.
    Liu L; Zhou H; Chen H; Wang Z; Ma R; Du X; Zhang M
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):37265-37274. PubMed ID: 38979633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroless Deposition Metals on Poly(dimethylsiloxane) with Strong Adhesion As Flexible and Stretchable Conductive Materials.
    Zhang FT; Xu L; Chen JH; Zhao B; Fu XZ; Sun R; Chen Q; Wong CP
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2075-2082. PubMed ID: 29253331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wafer-scale pattern transfer of metal nanostructures on polydimethylsiloxane (PDMS) substrates via holographic nanopatterns.
    Du K; Wathuthanthri I; Liu Y; Xu W; Choi CH
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5505-14. PubMed ID: 23020206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexed Imaging of Trace Residues in a Single Latent Fingerprint.
    Zhang Y; Zhou W; Xue Y; Yang J; Liu D
    Anal Chem; 2016 Dec; 88(24):12502-12507. PubMed ID: 27935674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using the refractive index of latent fingerprints for the quantification and characterisation of sample deposition.
    Pollard C; Wolff K
    Forensic Sci Int; 2024 Aug; 361():112124. PubMed ID: 38971140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using A Spin-Coater to Capture Adhesive Species during Polydopamine Thin-Film Fabrication.
    Le ML; Zhou Y; Byun J; Kolozsvari K; Xu S; Chen W
    Langmuir; 2019 Oct; 35(39):12722-12730. PubMed ID: 31536357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous imaging of latent fingerprint and quantification of nicotine residue by NaYF
    Zhao Z; Shen J; Wang M
    Nanotechnology; 2020 Apr; 31(14):145504. PubMed ID: 31860900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition of Latent Fingerprints and Ink-Free Printing Derived from Interfacial Segregation of Carbon Dots.
    Wang CF; Cheng R; Ji WQ; Ma K; Ling L; Chen S
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):39205-39213. PubMed ID: 30346127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Well-Preserved, Substrate-Versatile Latent Fingerprints by Aggregation-Induced Enhanced Emission-Active Conjugated Polyelectrolyte.
    Malik AH; Kalita A; Iyer PK
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37501-37508. PubMed ID: 28975794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanoparticles and imaging mass spectrometry: double imaging of latent fingerprints.
    Tang HW; Lu W; Che CM; Ng KM
    Anal Chem; 2010 Mar; 82(5):1589-93. PubMed ID: 20128591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the Deposition Morphology of Inkjet-Printed Crystalline Materials via Polydopamine Functional Coatings for Highly Uniform and Electrically Conductive Patterns.
    Liu L; Ma S; Pei Y; Xiong X; Sivakumar P; Singler TJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21750-61. PubMed ID: 27525496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired pH-Sensitive Surface on Bioinert Substrate.
    Wei X; Shen J; Gu Z; Zhu Y; Chen F; Zhong M; Yin L; Xie Y; Liu Z; Jin W; Nouri M; Chang L
    ACS Appl Bio Mater; 2018 Dec; 1(6):2167-2175. PubMed ID: 34996277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast imaging of eccrine latent fingerprints with nontoxic Mn-doped ZnS QDs.
    Xu C; Zhou R; He W; Wu L; Wu P; Hou X
    Anal Chem; 2014 Apr; 86(7):3279-83. PubMed ID: 24592864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterning Hydrophobic Surfaces by Negative Microcontact Printing and Its Applications.
    Wu H; Wu L; Zhou X; Liu B; Zheng B
    Small; 2018 Sep; 14(38):e1802128. PubMed ID: 30133159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prevention of polydimethylsiloxane microsphere migration using a mussel-inspired polydopamine coating for potential application in injection therapy.
    Chung EJ; Jun DR; Kim DW; Han MJ; Kwon TK; Choi SW; Kwon SK
    PLoS One; 2017; 12(11):e0186877. PubMed ID: 29095854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical visualization and squalene-based scanning electrochemical microscopy imaging of latent fingerprints on PVDF membrane.
    Liu L; Chen H; Tian L; Sun X; Zhang M
    Analyst; 2023 Feb; 148(5):1032-1040. PubMed ID: 36723182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components.
    Sileika TS; Kim HD; Maniak P; Messersmith PB
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4602-10. PubMed ID: 22044029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.