BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 27724863)

  • 1. Strand-specific RNA-Seq transcriptome analysis of genotypes with and without low-phosphorus tolerance provides novel insights into phosphorus-use efficiency in maize.
    Du Q; Wang K; Xu C; Zou C; Xie C; Xu Y; Li WX
    BMC Plant Biol; 2016 Oct; 16(1):222. PubMed ID: 27724863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress.
    Sun Y; Mu C; Chen Y; Kong X; Xu Y; Zheng H; Zhang H; Wang Q; Xue Y; Li Z; Ding Z; Liu X
    Plant Physiol Biochem; 2016 Dec; 109():467-481. PubMed ID: 27825075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maize Genotypes Sensitive and Tolerant to Low Phosphorus Levels Exhibit Different Transcriptome Profiles under
    Sun Q; Zhang P; Zhao Z; Sun X; Liu X; Zhang H; Jiang W
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569319
    [No Abstract]   [Full Text] [Related]  

  • 4. Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency.
    Li K; Xu C; Li Z; Zhang K; Yang A; Zhang J
    Plant J; 2008 Sep; 55(6):927-39. PubMed ID: 18489707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolite Profiling of Low-P Tolerant and Low-P Sensitive Maize Genotypes under Phosphorus Starvation and Restoration Conditions.
    Ganie AH; Ahmad A; Pandey R; Aref IM; Yousuf PY; Ahmad S; Iqbal M
    PLoS One; 2015; 10(6):e0129520. PubMed ID: 26090681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome Analysis of Tolerant and Susceptible Maize Genotypes Reveals Novel Insights about the Molecular Mechanisms Underlying Drought Responses in Leaves.
    Waititu JK; Zhang X; Chen T; Zhang C; Zhao Y; Wang H
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34209553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance.
    Wang M; Wang Y; Zhang Y; Li C; Gong S; Yan S; Li G; Hu G; Ren H; Yang J; Yu T; Yang K
    Genes Genomics; 2019 Jul; 41(7):781-801. PubMed ID: 30887305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of root library by SSH and preliminary analysis of genes responsible for phosphorus deficiency in maize.
    Huang Q; Gao SB; Zhang ZM; Lin HJ; Pan GT; Yang KC; Rong TZ
    Genetika; 2010 Dec; 46(12):1619-25. PubMed ID: 21428250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological and comparative proteome analyses reveal low-phosphate tolerance and enhanced photosynthesis in a maize mutant owing to reinforced inorganic phosphate recycling.
    Zhang K; Liu H; Song J; Wu W; Li K; Zhang J
    BMC Plant Biol; 2016 Jun; 16(1):129. PubMed ID: 27277671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and comparative analysis of low phosphate tolerance-associated microRNAs in two maize genotypes.
    Pei L; Jin Z; Li K; Yin H; Wang J; Yang A
    Plant Physiol Biochem; 2013 Sep; 70():221-34. PubMed ID: 23792878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress.
    Shi J; Yan B; Lou X; Ma H; Ruan S
    BMC Plant Biol; 2017 Jan; 17(1):26. PubMed ID: 28122503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress.
    Qing DJ; Lu HF; Li N; Dong HT; Dong DF; Li YZ
    Plant Cell Physiol; 2009 Apr; 50(4):889-903. PubMed ID: 19264788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and characterization of miRNAs from maize seedling roots under low phosphorus stress.
    Zhang Z; Lin H; Shen Y; Gao J; Xiang K; Liu L; Ding H; Yuan G; Lan H; Zhou S; Zhao M; Gao S; Rong T; Pan G
    Mol Biol Rep; 2012 Aug; 39(8):8137-46. PubMed ID: 22562381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolite profiling and genome-wide association studies reveal response mechanisms of phosphorus deficiency in maize seedling.
    Luo B; Ma P; Nie Z; Zhang X; He X; Ding X; Feng X; Lu Q; Ren Z; Lin H; Wu Y; Shen Y; Zhang S; Wu L; Liu D; Pan G; Rong T; Gao S
    Plant J; 2019 Mar; 97(5):947-969. PubMed ID: 30472798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening relevant genes of tolerance to low phosphorus in maize using cDNA-amplified fragment length polymorphism.
    Jiang HY; Li Z; Zhao J; Ma Q; Cheng BJ; Zhu SW
    Genet Mol Res; 2015 May; 14(2):5731-41. PubMed ID: 26125772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing new insights into different phosphorus-starving responses between two maize (Zea mays) inbred lines by transcriptomic and proteomic studies.
    Jiang H; Zhang J; Han Z; Yang J; Ge C; Wu Q
    Sci Rep; 2017 Mar; 7():44294. PubMed ID: 28276535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide identification of microRNAs responding to early stages of phosphate deficiency in maize.
    Nie Z; Ren Z; Wang L; Su S; Wei X; Zhang X; Wu L; Liu D; Tang H; Liu H; Zhang S; Gao S
    Physiol Plant; 2016 Jun; 157(2):161-74. PubMed ID: 26572939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance.
    Schlüter U; Colmsee C; Scholz U; Bräutigam A; Weber AP; Zellerhoff N; Bucher M; Fahnenstich H; Sonnewald U
    BMC Genomics; 2013 Jul; 14():442. PubMed ID: 23822863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. System analysis of microRNAs in the development and aluminium stress responses of the maize root system.
    Kong X; Zhang M; Xu X; Li X; Li C; Ding Z
    Plant Biotechnol J; 2014 Oct; 12(8):1108-21. PubMed ID: 24985700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low nitrogen availability inhibits the phosphorus starvation response in maize (Zea mays ssp. mays L.).
    Torres-Rodríguez JV; Salazar-Vidal MN; Chávez Montes RA; Massange-Sánchez JA; Gillmor CS; Sawers RJH
    BMC Plant Biol; 2021 Jun; 21(1):259. PubMed ID: 34090337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.