These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 27724945)
1. A robot-based behavioural task to quantify impairments in rapid motor decisions and actions after stroke. Bourke TC; Lowrey CR; Dukelow SP; Bagg SD; Norman KE; Scott SH J Neuroeng Rehabil; 2016 Oct; 13(1):91. PubMed ID: 27724945 [TBL] [Abstract][Full Text] [Related]
2. Robotic assessment of rapid motor decision making in children with perinatal stroke. Hawe RL; Kuczynski AM; Kirton A; Dukelow SP J Neuroeng Rehabil; 2020 Jul; 17(1):94. PubMed ID: 32664980 [TBL] [Abstract][Full Text] [Related]
3. A robotic object hitting task to quantify sensorimotor impairments in participants with stroke. Tyryshkin K; Coderre AM; Glasgow JI; Herter TM; Bagg SD; Dukelow SP; Scott SH J Neuroeng Rehabil; 2014 Apr; 11():47. PubMed ID: 24693877 [TBL] [Abstract][Full Text] [Related]
4. Impaired corrective responses to postural perturbations of the arm in individuals with subacute stroke. Bourke TC; Coderre AM; Bagg SD; Dukelow SP; Norman KE; Scott SH J Neuroeng Rehabil; 2015 Jan; 12(1):7. PubMed ID: 25605126 [TBL] [Abstract][Full Text] [Related]
5. Assessment of bilateral motor skills and visuospatial attention in children with perinatal stroke using a robotic object hitting task. Hawe RL; Kuczynski AM; Kirton A; Dukelow SP J Neuroeng Rehabil; 2020 Feb; 17(1):18. PubMed ID: 32054511 [TBL] [Abstract][Full Text] [Related]
6. A robot-based interception task to quantify upper limb impairments in proprioceptive and visual feedback after stroke. Park K; Ritsma BR; Dukelow SP; Scott SH J Neuroeng Rehabil; 2023 Oct; 20(1):137. PubMed ID: 37821970 [TBL] [Abstract][Full Text] [Related]
7. Robotic Characterization of Ipsilesional Motor Function in Subacute Stroke. Semrau JA; Herter TM; Kenzie JM; Findlater SE; Scott SH; Dukelow SP Neurorehabil Neural Repair; 2017 Jun; 31(6):571-582. PubMed ID: 28443784 [TBL] [Abstract][Full Text] [Related]
8. Robot-based hand motor therapy after stroke. Takahashi CD; Der-Yeghiaian L; Le V; Motiwala RR; Cramer SC Brain; 2008 Feb; 131(Pt 2):425-37. PubMed ID: 18156154 [TBL] [Abstract][Full Text] [Related]
9. A postural unloading task to assess fast corrective responses in the upper limb following stroke. Lowrey CR; Bourke TC; Bagg SD; Dukelow SP; Scott SH J Neuroeng Rehabil; 2019 Jan; 16(1):16. PubMed ID: 30691482 [TBL] [Abstract][Full Text] [Related]
10. Examining Differences in Patterns of Sensory and Motor Recovery After Stroke With Robotics. Semrau JA; Herter TM; Scott SH; Dukelow SP Stroke; 2015 Dec; 46(12):3459-69. PubMed ID: 26542695 [TBL] [Abstract][Full Text] [Related]
11. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Daly JJ; Ruff RL ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618 [TBL] [Abstract][Full Text] [Related]
12. Robot-based assessment of motor and proprioceptive function identifies biomarkers for prediction of functional independence measures. Mostafavi SM; Mousavi P; Dukelow SP; Scott SH J Neuroeng Rehabil; 2015 Nov; 12():105. PubMed ID: 26611144 [TBL] [Abstract][Full Text] [Related]
13. Assessment-driven selection and adaptation of exercise difficulty in robot-assisted therapy: a pilot study with a hand rehabilitation robot. Metzger JC; Lambercy O; Califfi A; Dinacci D; Petrillo C; Rossi P; Conti FM; Gassert R J Neuroeng Rehabil; 2014 Nov; 11():154. PubMed ID: 25399249 [TBL] [Abstract][Full Text] [Related]
14. Impairments in Cognitive Control Using a Reverse Visually Guided Reaching Task Following Stroke. Lowrey CR; Dukelow SP; Bagg SD; Ritsma B; Scott SH Neurorehabil Neural Repair; 2022 Jul; 36(7):449-460. PubMed ID: 35576434 [TBL] [Abstract][Full Text] [Related]
15. The independence of deficits in position sense and visually guided reaching following stroke. Dukelow SP; Herter TM; Bagg SD; Scott SH J Neuroeng Rehabil; 2012 Oct; 9():72. PubMed ID: 23035968 [TBL] [Abstract][Full Text] [Related]
16. A composite robotic-based measure of upper limb proprioception. Kenzie JM; Semrau JA; Hill MD; Scott SH; Dukelow SP J Neuroeng Rehabil; 2017 Nov; 14(1):114. PubMed ID: 29132388 [TBL] [Abstract][Full Text] [Related]
17. Inter-rater reliability of kinesthetic measurements with the KINARM robotic exoskeleton. Semrau JA; Herter TM; Scott SH; Dukelow SP J Neuroeng Rehabil; 2017 May; 14(1):42. PubMed ID: 28532512 [TBL] [Abstract][Full Text] [Related]
18. Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients. Otaka E; Otaka Y; Kasuga S; Nishimoto A; Yamazaki K; Kawakami M; Ushiba J; Liu M J Neuroeng Rehabil; 2015 Aug; 12():66. PubMed ID: 26265327 [TBL] [Abstract][Full Text] [Related]
19. Eye-hand coordination and its relationship with sensori-motor impairments in stroke survivors. Gao KL; Ng SS; Kwok JW; Chow RT; Tsang WW J Rehabil Med; 2010 Apr; 42(4):368-73. PubMed ID: 20461340 [TBL] [Abstract][Full Text] [Related]
20. The feasibility of using robotic technology to quantify sensory, motor, and cognitive impairments associated with ALS. Simmatis L; Atallah G; Scott SH; Taylor S Amyotroph Lateral Scler Frontotemporal Degener; 2019 Feb; 20(1-2):43-52. PubMed ID: 30688092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]