These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Effects of alcohol-induced lipid interdigitation on proton permeability in L-alpha-dipalmitoylphosphatidylcholine vesicles. Zeng J; Smith KE; Chong PL Biophys J; 1993 Oct; 65(4):1404-14. PubMed ID: 8274634 [TBL] [Abstract][Full Text] [Related]
43. Liposomes Containing Lipid-Soluble Zn(II)-Bis-dipicolylamine Derivatives Show Potential To Be Targeted to Phosphatidylserine on the Surface of Cancer Cells. Ayesa U; Gray BD; Pak KY; Chong PL Mol Pharm; 2017 Jan; 14(1):147-156. PubMed ID: 28043132 [TBL] [Abstract][Full Text] [Related]
44. Structural and calorimetrical studies of the effect of different aminoglycosides on DPPC liposomes. Oszlánczi A; Bóta A; Czabai G; Klumpp E Colloids Surf B Biointerfaces; 2009 Feb; 69(1):116-21. PubMed ID: 19118988 [TBL] [Abstract][Full Text] [Related]
45. Interactions between bacteriohopane-32,33,34,35-tetrol and liposomal membranes composed of dipalmitoylphosphatidylcholine. Chen Z; Sato Y; Nakazawa I; Suzuki Y Biol Pharm Bull; 1995 Mar; 18(3):477-80. PubMed ID: 7550109 [TBL] [Abstract][Full Text] [Related]
46. Effects of phospholipid hydrolysis on the aggregate structure in DPPC/DSPE-PEG2000 liposome preparations after gel to liquid crystalline phase transition. Ickenstein LM; Sandström MC; Mayer LD; Edwards K Biochim Biophys Acta; 2006 Feb; 1758(2):171-80. PubMed ID: 16574061 [TBL] [Abstract][Full Text] [Related]
47. Effects of the acyl chain composition of phosphatidylcholines on the stability of freeze-dried small liposomes in the presence of maltose. Komatsu H; Saito H; Okada S; Tanaka M; Egashira M; Handa T Chem Phys Lipids; 2001 Nov; 113(1-2):29-39. PubMed ID: 11687225 [TBL] [Abstract][Full Text] [Related]
48. A calorimetric and spectroscopic comparison of the effects of lathosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Biochemistry; 2011 Nov; 50(46):9982-97. PubMed ID: 21951051 [TBL] [Abstract][Full Text] [Related]
49. Contribution of headgroup and chain length of glycerophospholipids to thermal stability and permeability of liposomes loaded with calcein. Prislan I; Lokar M; Zirdum M; Valant J; Poklar Ulrih N Chem Phys Lipids; 2019 Dec; 225():104807. PubMed ID: 31390525 [TBL] [Abstract][Full Text] [Related]
50. Lipids, curvature stress, and the action of lipid prodrugs: free fatty acids and lysolipid enhancement of drug transport across liposomal membranes. Jespersen H; Andersen JH; Ditzel HJ; Mouritsen OG Biochimie; 2012 Jan; 94(1):2-10. PubMed ID: 21839138 [TBL] [Abstract][Full Text] [Related]
51. A DSC and Raman spectroscopy study on the effect of PAMAM dendrimer on DPPC model lipid membranes. Gardikis K; Hatziantoniou S; Viras K; Wagner M; Demetzos C Int J Pharm; 2006 Aug; 318(1-2):118-23. PubMed ID: 16675175 [TBL] [Abstract][Full Text] [Related]
52. Temperature-dependent drug release from DPPC:C12H25-PNIPAM-COOH liposomes: control of the drug loading/release by modulation of the nanocarriers' components. Pippa N; Meristoudi A; Pispas S; Demetzos C Int J Pharm; 2015 May; 485(1-2):374-82. PubMed ID: 25776453 [TBL] [Abstract][Full Text] [Related]
53. Curcumin disorders 1,2-dipalmitoyl-sn-glycero-3-phosphocholine membranes and favors the formation of nonlamellar structures by 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine. Pérez-Lara A; Ausili A; Aranda FJ; de Godos A; Torrecillas A; Corbalán-García S; Gómez-Fernández JC J Phys Chem B; 2010 Aug; 114(30):9778-86. PubMed ID: 20666521 [TBL] [Abstract][Full Text] [Related]
54. Structure of drug delivery DPPA and DPPC liposomes with ligands and their permeability through cells. Khvedelidze M; Mdzinarashvili T; Shekiladze E; Schneider M; Moersdorf D; Bernhardt I J Liposome Res; 2015 Mar; 25(1):20-31. PubMed ID: 24766638 [TBL] [Abstract][Full Text] [Related]
55. Influence of intravesicular pH drift and membrane binding on the liposomal release of a model amine-containing permeant. Tejwani RW; Anderson BD J Pharm Sci; 2008 Jan; 97(1):381-99. PubMed ID: 17694543 [TBL] [Abstract][Full Text] [Related]
56. Interactions of isoniazid with membrane models: implications for drug mechanism of action. Pinheiro M; Silva AS; Pisco S; Reis S Chem Phys Lipids; 2014 Oct; 183():184-90. PubMed ID: 25016155 [TBL] [Abstract][Full Text] [Related]
57. C8-glycosphingolipids preferentially insert into tumor cell membranes and promote chemotherapeutic drug uptake. Cordeiro Pedrosa LR; van Cappellen WA; Steurer B; Ciceri D; ten Hagen TL; Eggermont AM; Verheij M; Goñi FM; Koning GA; Contreras FX Biochim Biophys Acta; 2015 Aug; 1848(8):1656-70. PubMed ID: 25917957 [TBL] [Abstract][Full Text] [Related]
59. Effect of methyl-branched fatty acids on the structure of lipid bilayers. Poger D; Caron B; Mark AE J Phys Chem B; 2014 Dec; 118(48):13838-48. PubMed ID: 25380125 [TBL] [Abstract][Full Text] [Related]
60. Assessment of cell viability and permeation enhancement in presence of lipid-based self-emulsifying drug delivery systems using Caco-2 cell model: Polysorbate 80 as the surfactant. Bu P; Ji Y; Narayanan S; Dalrymple D; Cheng X; Serajuddin AT Eur J Pharm Sci; 2017 Mar; 99():350-360. PubMed ID: 28024890 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]