BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27725293)

  • 1. HybridRanker: Integrating network topology and biomedical knowledge to prioritize cancer candidate genes.
    Razaghi-Moghadam Z; Abdollahi R; Goliaei S; Ebrahimi M
    J Biomed Inform; 2016 Dec; 64():139-146. PubMed ID: 27725293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global risk transformative prioritization for prostate cancer candidate genes in molecular networks.
    Chen L; Tai J; Zhang L; Shang Y; Li X; Qu X; Li W; Miao Z; Jia X; Wang H; Li W; He W
    Mol Biosyst; 2011 Sep; 7(9):2547-53. PubMed ID: 21735017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data.
    Luo J; Liang S
    J Biomed Inform; 2015 Feb; 53():229-36. PubMed ID: 25460206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prioritizing disease genes with an improved dual label propagation framework.
    Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M
    BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent approaches to the prioritization of candidate disease genes.
    Doncheva NT; Kacprowski T; Albrecht M
    Wiley Interdiscip Rev Syst Biol Med; 2012; 4(5):429-42. PubMed ID: 22689539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prioritization of candidate disease genes by combining topological similarity and semantic similarity.
    Liu B; Jin M; Zeng P
    J Biomed Inform; 2015 Oct; 57():1-5. PubMed ID: 26173039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures.
    Li Y; Sahni N; Yi S
    Oncotarget; 2016 Nov; 7(48):78841-78849. PubMed ID: 27791983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ProSim: A Method for Prioritizing Disease Genes Based on Protein Proximity and Disease Similarity.
    Ganegoda GU; Sheng Y; Wang J
    Biomed Res Int; 2015; 2015():213750. PubMed ID: 26339594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational framework for the prioritization of disease-gene candidates.
    Browne F; Wang H; Zheng H
    BMC Genomics; 2015; 16 Suppl 9(Suppl 9):S2. PubMed ID: 26330267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel candidate disease genes prioritization method based on module partition and rank fusion.
    Chen X; Yan GY; Liao XP
    OMICS; 2010 Aug; 14(4):337-56. PubMed ID: 20726795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prioritization of orphan disease-causing genes using topological feature and GO similarity between proteins in interaction networks.
    Li M; Li Q; Ganegoda GU; Wang J; Wu F; Pan Y
    Sci China Life Sci; 2014 Nov; 57(11):1064-71. PubMed ID: 25326068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NDRC: A Disease-Causing Genes Prioritized Method Based on Network Diffusion and Rank Concordance.
    Fang M; Hu X; Wang Y; Zhao J; Shen X; He T
    IEEE Trans Nanobioscience; 2015 Jul; 14(5):521-7. PubMed ID: 26080386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying and prioritizing disease-related genes based on the network topological features.
    Li ZC; Lai YH; Chen LL; Xie Y; Dai Z; Zou XY
    Biochim Biophys Acta; 2014 Dec; 1844(12):2214-21. PubMed ID: 25183318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vavien: an algorithm for prioritizing candidate disease genes based on topological similarity of proteins in interaction networks.
    Erten S; Bebek G; Koyutürk M
    J Comput Biol; 2011 Nov; 18(11):1561-74. PubMed ID: 22035267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.
    Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TransNeT-CGP: A cluster-based comorbid gene prioritization by integrating transcriptomics and network-topological features.
    Saranya KR; Vimina ER; Pinto FR
    Comput Biol Chem; 2024 Jun; 110():108038. PubMed ID: 38461796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HGPEC: a Cytoscape app for prediction of novel disease-gene and disease-disease associations and evidence collection based on a random walk on heterogeneous network.
    Le DH; Pham VH
    BMC Syst Biol; 2017 Jun; 11(1):61. PubMed ID: 28619054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records.
    Jiang L; Edwards SM; Thomsen B; Workman CT; Guldbrandtsen B; Sørensen P
    BMC Bioinformatics; 2014 Sep; 15(1):315. PubMed ID: 25253562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.