These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27725293)

  • 1. HybridRanker: Integrating network topology and biomedical knowledge to prioritize cancer candidate genes.
    Razaghi-Moghadam Z; Abdollahi R; Goliaei S; Ebrahimi M
    J Biomed Inform; 2016 Dec; 64():139-146. PubMed ID: 27725293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global risk transformative prioritization for prostate cancer candidate genes in molecular networks.
    Chen L; Tai J; Zhang L; Shang Y; Li X; Qu X; Li W; Miao Z; Jia X; Wang H; Li W; He W
    Mol Biosyst; 2011 Sep; 7(9):2547-53. PubMed ID: 21735017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data.
    Luo J; Liang S
    J Biomed Inform; 2015 Feb; 53():229-36. PubMed ID: 25460206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prioritizing disease genes with an improved dual label propagation framework.
    Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M
    BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent approaches to the prioritization of candidate disease genes.
    Doncheva NT; Kacprowski T; Albrecht M
    Wiley Interdiscip Rev Syst Biol Med; 2012; 4(5):429-42. PubMed ID: 22689539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prioritization of candidate disease genes by combining topological similarity and semantic similarity.
    Liu B; Jin M; Zeng P
    J Biomed Inform; 2015 Oct; 57():1-5. PubMed ID: 26173039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures.
    Li Y; Sahni N; Yi S
    Oncotarget; 2016 Nov; 7(48):78841-78849. PubMed ID: 27791983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ProSim: A Method for Prioritizing Disease Genes Based on Protein Proximity and Disease Similarity.
    Ganegoda GU; Sheng Y; Wang J
    Biomed Res Int; 2015; 2015():213750. PubMed ID: 26339594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational framework for the prioritization of disease-gene candidates.
    Browne F; Wang H; Zheng H
    BMC Genomics; 2015; 16 Suppl 9(Suppl 9):S2. PubMed ID: 26330267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel candidate disease genes prioritization method based on module partition and rank fusion.
    Chen X; Yan GY; Liao XP
    OMICS; 2010 Aug; 14(4):337-56. PubMed ID: 20726795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prioritization of orphan disease-causing genes using topological feature and GO similarity between proteins in interaction networks.
    Li M; Li Q; Ganegoda GU; Wang J; Wu F; Pan Y
    Sci China Life Sci; 2014 Nov; 57(11):1064-71. PubMed ID: 25326068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NDRC: A Disease-Causing Genes Prioritized Method Based on Network Diffusion and Rank Concordance.
    Fang M; Hu X; Wang Y; Zhao J; Shen X; He T
    IEEE Trans Nanobioscience; 2015 Jul; 14(5):521-7. PubMed ID: 26080386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying and prioritizing disease-related genes based on the network topological features.
    Li ZC; Lai YH; Chen LL; Xie Y; Dai Z; Zou XY
    Biochim Biophys Acta; 2014 Dec; 1844(12):2214-21. PubMed ID: 25183318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vavien: an algorithm for prioritizing candidate disease genes based on topological similarity of proteins in interaction networks.
    Erten S; Bebek G; Koyutürk M
    J Comput Biol; 2011 Nov; 18(11):1561-74. PubMed ID: 22035267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.
    Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TransNeT-CGP: A cluster-based comorbid gene prioritization by integrating transcriptomics and network-topological features.
    Saranya KR; Vimina ER; Pinto FR
    Comput Biol Chem; 2024 Jun; 110():108038. PubMed ID: 38461796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HGPEC: a Cytoscape app for prediction of novel disease-gene and disease-disease associations and evidence collection based on a random walk on heterogeneous network.
    Le DH; Pham VH
    BMC Syst Biol; 2017 Jun; 11(1):61. PubMed ID: 28619054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records.
    Jiang L; Edwards SM; Thomsen B; Workman CT; Guldbrandtsen B; Sørensen P
    BMC Bioinformatics; 2014 Sep; 15(1):315. PubMed ID: 25253562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.