BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27725340)

  • 1. Free-floating epithelial micro-tissue arrays: a low cost and versatile technique.
    Flood P; Alvarez L; Reynaud EG
    Biofabrication; 2016 Oct; 8(4):045006. PubMed ID: 27725340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of spatially and geometrically controlled three-dimensional tissues in soft gels by sacrificial micromolding.
    Cerchiari A; Garbe JC; Todhunter ME; Jee NY; Pinney JR; LaBarge MA; Desai TA; Gartner ZJ
    Tissue Eng Part C Methods; 2015 Jun; 21(6):541-7. PubMed ID: 25351430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatible Hydrogels for Microarray Cell Printing and Encapsulation.
    Datar A; Joshi P; Lee MY
    Biosensors (Basel); 2015 Oct; 5(4):647-63. PubMed ID: 26516921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs.
    Jung JW; Lee JS; Cho DW
    Sci Rep; 2016 Feb; 6():21685. PubMed ID: 26899876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-Material 3D-Printed Intestinal Model Devices with Integrated Villi-like Scaffolds.
    Taebnia N; Zhang R; Kromann EB; Dolatshahi-Pirouz A; Andresen TL; Larsen NB
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58434-58446. PubMed ID: 34866391
    [No Abstract]   [Full Text] [Related]  

  • 6. Production of Uniform 3D Microtumors in Hydrogel Microwell Arrays for Measurement of Viability, Morphology, and Signaling Pathway Activation.
    Singh M; Close DA; Mukundan S; Johnston PA; Sant S
    Assay Drug Dev Technol; 2015 Nov; 13(9):570-83. PubMed ID: 26274587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of human breast tissues from patient cells in 3D hydrogel scaffolds.
    Sokol ES; Miller DH; Breggia A; Spencer KC; Arendt LM; Gupta PB
    Breast Cancer Res; 2016 Mar; 18(1):19. PubMed ID: 26926363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioprinting of 3D hydrogels.
    Stanton MM; Samitier J; Sánchez S
    Lab Chip; 2015 Aug; 15(15):3111-5. PubMed ID: 26066320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3-D cell culture system to study epithelia functions using microcarriers.
    Jakob PH; Kehrer J; Flood P; Wiegel C; Haselmann U; Meissner M; Stelzer EH; Reynaud EG
    Cytotechnology; 2016 Oct; 68(5):1813-25. PubMed ID: 26847791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of 3D scaffolds reproducing intestinal epithelium topography by high-resolution 3D stereolithography.
    Creff J; Courson R; Mangeat T; Foncy J; Souleille S; Thibault C; Besson A; Malaquin L
    Biomaterials; 2019 Nov; 221():119404. PubMed ID: 31419651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas aeruginosa pathogenesis.
    Carterson AJ; Höner zu Bentrup K; Ott CM; Clarke MS; Pierson DL; Vanderburg CR; Buchanan KL; Nickerson CA; Schurr MJ
    Infect Immun; 2005 Feb; 73(2):1129-40. PubMed ID: 15664956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Fabrication of Complex Scaffolds for Bone Defect Healing: Combined 3D Plotting of a Calcium Phosphate Cement and a Growth Factor-Loaded Hydrogel.
    Ahlfeld T; Akkineni AR; Förster Y; Köhler T; Knaack S; Gelinsky M; Lode A
    Ann Biomed Eng; 2017 Jan; 45(1):224-236. PubMed ID: 27384939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Neural Culture in Dual Hydrogel Systems.
    Lowry Curley J; Moore MJ
    Methods Mol Biol; 2017; 1612():225-237. PubMed ID: 28634947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micropatterns of Matrigel for three-dimensional epithelial cultures.
    Sodunke TR; Turner KK; Caldwell SA; McBride KW; Reginato MJ; Noh HM
    Biomaterials; 2007 Sep; 28(27):4006-16. PubMed ID: 17574663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric spectroscopy for non-invasive monitoring of epithelial cell differentiation within three-dimensional scaffolds.
    Daoud J; Asami K; Rosenberg L; Tabrizian M
    Phys Med Biol; 2012 Aug; 57(16):5097-112. PubMed ID: 22837013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlative Light and Scanning Electron Microscopy to Study Interactions of Salmonella enterica with Polarized Epithelial Cell Monolayers.
    Kommnick C; Hensel M
    Methods Mol Biol; 2021; 2182():103-115. PubMed ID: 32894490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The microenvironmental determinants for kidney epithelial cyst morphogenesis.
    Guo Q; Xia B; Moshiach S; Xu C; Jiang Y; Chen Y; Sun Y; Lahti JM; Zhang XA
    Eur J Cell Biol; 2008 Apr; 87(4):251-66. PubMed ID: 18191498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing Edge Speeds of Epithelial Monolayers Depend on Their Initial Confining Geometry.
    Kollimada SA; Kulkarni AH; Ravan A; Gundiah N
    PLoS One; 2016; 11(4):e0153471. PubMed ID: 27078632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-printable cell crowding device enables imaging of live cells in compression.
    Dow LP; Khankhel AH; Abram J; Valentine MT
    Biotechniques; 2020 May; 68(5):275-278. PubMed ID: 32096656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.