BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 27725343)

  • 1. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility.
    Dai X; Ma C; Lan Q; Xu T
    Biofabrication; 2016 Oct; 8(4):045005. PubMed ID: 27725343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioprinting of glioma stem cells improves their endotheliogenic potential.
    Wang X; Li X; Dai X; Zhang X; Zhang J; Xu T; Lan Q
    Colloids Surf B Biointerfaces; 2018 Nov; 171():629-637. PubMed ID: 30107336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells.
    Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G
    J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioprintable Alginate/Gelatin Hydrogel 3D In Vitro Model Systems Induce Cell Spheroid Formation.
    Jiang T; Munguia-Lopez J; Flores-Torres S; Grant J; Vijayakumar S; De Leon-Rodriguez A; Kinsella JM
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30010644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coaxial extrusion bioprinted shell-core hydrogel microfibers mimic glioma microenvironment and enhance the drug resistance of cancer cells.
    Wang X; Li X; Dai X; Zhang X; Zhang J; Xu T; Lan Q
    Colloids Surf B Biointerfaces; 2018 Nov; 171():291-299. PubMed ID: 30048904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation.
    Wu Z; Su X; Xu Y; Kong B; Sun W; Mi S
    Sci Rep; 2016 Apr; 6():24474. PubMed ID: 27091175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D bioprinted glioma cell-laden scaffolds enriching glioma stem cells via epithelial-mesenchymal transition.
    Wang X; Dai X; Zhang X; Ma C; Li X; Xu T; Lan Q
    J Biomed Mater Res A; 2019 Feb; 107(2):383-391. PubMed ID: 30350390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteogenic Differentiation of Three-Dimensional Bioprinted Constructs Consisting of Human Adipose-Derived Stem Cells In Vitro and In Vivo.
    Wang XF; Song Y; Liu YS; Sun YC; Wang YG; Wang Y; Lyu PJ
    PLoS One; 2016; 11(6):e0157214. PubMed ID: 27332814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell adhesion behavior in 3D hydrogel scaffolds functionalized with D- or L-aminoacids.
    Benson K; Galla HJ; Kehr NS
    Macromol Biosci; 2014 Jun; 14(6):793-8. PubMed ID: 24515547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of 3D calcium-alginate scaffolds for human glioblastoma modeling and anticancer drug response evaluation.
    Chaicharoenaudomrung N; Kunhorm P; Promjantuek W; Heebkaew N; Rujanapun N; Noisa P
    J Cell Physiol; 2019 Nov; 234(11):20085-20097. PubMed ID: 30945284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells.
    Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG
    Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel drug conjugate, NEO212, targeting proneural and mesenchymal subtypes of patient-derived glioma cancer stem cells.
    Jhaveri N; Agasse F; Armstrong D; Peng L; Commins D; Wang W; Rosenstein-Sisson R; Vaikari VP; Santiago SV; Santos T; Chen L; Schönthal AH; Chen TC; Hofman FM
    Cancer Lett; 2016 Feb; 371(2):240-50. PubMed ID: 26683773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the tumor microenvironment using chitosan-alginate scaffolds to control the stem-like state of glioblastoma cells.
    Kievit FM; Wang K; Erickson AE; Lan Levengood SK; Ellenbogen RG; Zhang M
    Biomater Sci; 2016 Apr; 4(4):610-3. PubMed ID: 26688867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds.
    Henriksson I; Gatenholm P; Hägg DA
    Biofabrication; 2017 Feb; 9(1):015022. PubMed ID: 28140346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting miR-381-NEFL axis sensitizes glioblastoma cells to temozolomide by regulating stemness factors and multidrug resistance factors.
    Wang Z; Yang J; Xu G; Wang W; Liu C; Yang H; Yu Z; Lei Q; Xiao L; Xiong J; Zeng L; Xiang J; Ma J; Li G; Wu M
    Oncotarget; 2015 Feb; 6(5):3147-64. PubMed ID: 25605243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue.
    Zhang G; Varkey M; Wang Z; Xie B; Hou R; Atala A
    Biotechnol Bioeng; 2020 Apr; 117(4):1148-1158. PubMed ID: 31840798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a clay based bioink for 3D cell printing for skeletal application.
    Ahlfeld T; Cidonio G; Kilian D; Duin S; Akkineni AR; Dawson JI; Yang S; Lode A; Oreffo ROC; Gelinsky M
    Biofabrication; 2017 Jul; 9(3):034103. PubMed ID: 28691691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.
    Daly AC; Critchley SE; Rencsok EM; Kelly DJ
    Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D bioprinted glioma microenvironment for glioma vascularization.
    Wang X; Li X; Ding J; Long X; Zhang H; Zhang X; Jiang X; Xu T
    J Biomed Mater Res A; 2021 Jun; 109(6):915-925. PubMed ID: 32779363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.