BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27725581)

  • 1. [Recent advances in elucidating KEAP1-NRF2 functions in hematopoietic/immune cells and leukemic cells].
    Murakami S; Motohashi H
    Rinsho Ketsueki; 2016; 57(10):1860-1868. PubMed ID: 27725581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Overview of the Advantages of KEAP1-NRF2 System Activation During Inflammatory Disease Treatment.
    Keleku-Lukwete N; Suzuki M; Yamamoto M
    Antioxid Redox Signal; 2018 Dec; 29(17):1746-1755. PubMed ID: 28899203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Keap1-Nrf2 system regulates cell fate determination of hematopoietic stem cells.
    Murakami S; Shimizu R; Romeo PH; Yamamoto M; Motohashi H
    Genes Cells; 2014 Mar; 19(3):239-53. PubMed ID: 24580727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NRF2 Activation Impairs Quiescence and Bone Marrow Reconstitution Capacity of Hematopoietic Stem Cells.
    Murakami S; Suzuki T; Harigae H; Romeo PH; Yamamoto M; Motohashi H
    Mol Cell Biol; 2017 Oct; 37(19):. PubMed ID: 28674188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pterostilbene-mediated Nrf2 activation: Mechanistic insights on Keap1:Nrf2 interface.
    Bhakkiyalakshmi E; Dineshkumar K; Karthik S; Sireesh D; Hopper W; Paulmurugan R; Ramkumar KM
    Bioorg Med Chem; 2016 Aug; 24(16):3378-86. PubMed ID: 27312421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms for the regulation of Nrf2-mediated cell proliferation in non-small-cell lung cancers.
    Yamadori T; Ishii Y; Homma S; Morishima Y; Kurishima K; Itoh K; Yamamoto M; Minami Y; Noguchi M; Hizawa N
    Oncogene; 2012 Nov; 31(45):4768-77. PubMed ID: 22249257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular recognition between potential natural inhibitors of the Keap1-Nrf2 complex.
    Bello M; Morales-González JA
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):981-992. PubMed ID: 28746889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances of Natural Polyphenols Activators for Keap1-Nrf2 Signaling Pathway.
    Zhou Y; Jiang Z; Lu H; Xu Z; Tong R; Shi J; Jia G
    Chem Biodivers; 2019 Nov; 16(11):e1900400. PubMed ID: 31482617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Keap1-Nrf2 protein-protein interaction: A suitable target for small molecules.
    Schmoll D; Engel CK; Glombik H
    Drug Discov Today Technol; 2017 Jun; 24():11-17. PubMed ID: 29233294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From germ cells to neonates: the beginning of life and the KEAP1-NRF2 system.
    Matsumaru D; Motohashi H
    J Biochem; 2020 Feb; 167(2):133-138. PubMed ID: 31518425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-acetylcysteine Ameliorates Prostatitis via miR-141 Regulating Keap1/Nrf2 Signaling.
    Wang LL; Huang YH; Yan CY; Wei XD; Hou JQ; Pu JX; Lv JX
    Inflammation; 2016 Apr; 39(2):938-47. PubMed ID: 26941030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of miR-200a protects cardiomyocytes against hypoxia-induced apoptosis by modulating the kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 signaling axis.
    Sun X; Zuo H; Liu C; Yang Y
    Int J Mol Med; 2016 Oct; 38(4):1303-11. PubMed ID: 27573160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of a head-to-tail cyclic peptide as the Keap1-Nrf2 protein-protein interaction inhibitor with high cell potency.
    Lu MC; Jiao Q; Liu T; Tan SJ; Zhou HS; You QD; Jiang ZY
    Eur J Med Chem; 2018 Jan; 143():1578-1589. PubMed ID: 29117896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution.
    Taguchi K; Motohashi H; Yamamoto M
    Genes Cells; 2011 Feb; 16(2):123-40. PubMed ID: 21251164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations in the Nrf2-Keap1 signaling pathway and its downstream target genes in rat brain under stress.
    Djordjevic J; Djordjevic A; Adzic M; Mitic M; Lukic I; Radojcic MB
    Brain Res; 2015 Mar; 1602():20-31. PubMed ID: 25598205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Dual Roles of NRF2 in Cancer.
    Menegon S; Columbano A; Giordano S
    Trends Mol Med; 2016 Jul; 22(7):578-593. PubMed ID: 27263465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The complexity of the Nrf2 pathway: beyond the antioxidant response.
    Huang Y; Li W; Su ZY; Kong AN
    J Nutr Biochem; 2015 Dec; 26(12):1401-13. PubMed ID: 26419687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the Keap1-Nrf2 pathway in cancer.
    Leinonen HM; Kansanen E; Pölönen P; Heinäniemi M; Levonen AL
    Adv Cancer Res; 2014; 122():281-320. PubMed ID: 24974185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of the Nrf2/ARE pathway via S-alkylation of cysteine 151 in the chemopreventive agent-sensor Keap1 protein by falcarindiol, a conjugated diacetylene compound.
    Ohnuma T; Nakayama S; Anan E; Nishiyama T; Ogura K; Hiratsuka A
    Toxicol Appl Pharmacol; 2010 Apr; 244(1):27-36. PubMed ID: 20026152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.