These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27725668)

  • 1. Theory of highly efficient multiexciton generation in type-II nanorods.
    Eshet H; Baer R; Neuhauser D; Rabani E
    Nat Commun; 2016 Oct; 7():13178. PubMed ID: 27725668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency of multiexciton generation in colloidal nanostructures.
    Shabaev A; Hellberg CS; Efros AL
    Acc Chem Res; 2013 Jun; 46(6):1242-51. PubMed ID: 23461547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiexciton annihilation and dissociation in quantum confined semiconductor nanocrystals.
    Zhu H; Yang Y; Lian T
    Acc Chem Res; 2013 Jun; 46(6):1270-9. PubMed ID: 23148478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120.
    Davis NJ; Böhm ML; Tabachnyk M; Wisnivesky-Rocca-Rivarola F; Jellicoe TC; Ducati C; Ehrler B; Greenham NC
    Nat Commun; 2015 Sep; 6():8259. PubMed ID: 26411283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The quantum coherent mechanism for singlet fission: experiment and theory.
    Chan WL; Berkelbach TC; Provorse MR; Monahan NR; Tritsch JR; Hybertsen MS; Reichman DR; Gao J; Zhu XY
    Acc Chem Res; 2013 Jun; 46(6):1321-9. PubMed ID: 23581494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Carrier Multiplication in Colloidal Silicon Nanorods.
    Stolle CJ; Lu X; Yu Y; Schaller RD; Korgel BA
    Nano Lett; 2017 Sep; 17(9):5580-5586. PubMed ID: 28762274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiexciton Generation in IV-VI Nanocrystals: The Role of Carrier Effective Mass, Band Mixing, and Phonon Emission.
    Zohar G; Baer R; Rabani E
    J Phys Chem Lett; 2013 Jan; 4(2):317-22. PubMed ID: 26283441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Carrier Multiplication in Low Band Gap Mixed Sn/Pb Halide Perovskites.
    Maiti S; Ferro S; Poonia D; Ehrler B; Kinge S; Siebbeles LDA
    J Phys Chem Lett; 2020 Aug; 11(15):6146-6149. PubMed ID: 32672041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.
    Beard MC; Luther JM; Semonin OE; Nozik AJ
    Acc Chem Res; 2013 Jun; 46(6):1252-60. PubMed ID: 23113604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals.
    Li M; Begum R; Fu J; Xu Q; Koh TM; Veldhuis SA; Grätzel M; Mathews N; Mhaisalkar S; Sum TC
    Nat Commun; 2018 Oct; 9(1):4197. PubMed ID: 30305633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Efficient Multiple Exciton Generation and Harvesting in Few-Layer Black Phosphorus and Heterostructure.
    Zhou Q; Zhou H; Tao W; Zheng Y; Chen Y; Zhu H
    Nano Lett; 2020 Nov; 20(11):8212-8219. PubMed ID: 33044075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting Biexciton Collection Efficiency at Quantum Dot-Oxide Interfaces by Hole Localization at the Quantum Dot Shell.
    Wang HI; Bonn M; Cánovas E
    J Phys Chem Lett; 2017 Jun; 8(12):2654-2658. PubMed ID: 28558226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Infrared-to-Visible Upconversion with Subsolar Irradiance.
    Mahboub M; Huang Z; Tang ML
    Nano Lett; 2016 Nov; 16(11):7169-7175. PubMed ID: 27788577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiexciton Solar Cells of CuInSe2 Nanocrystals.
    Stolle CJ; Harvey TB; Pernik DR; Hibbert JI; Du J; Rhee DJ; Akhavan VA; Schaller RD; Korgel BA
    J Phys Chem Lett; 2014 Jan; 5(2):304-9. PubMed ID: 26270704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiexciton Generation in Seeded Nanorods.
    Eshet H; Baer R; Neuhauser D; Rabani E
    J Phys Chem Lett; 2014 Aug; 5(15):2580-5. PubMed ID: 26277946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exciton Dissociation in CdSe/CdTe Heterostructure Nanorods.
    Wang S; Wang LW
    J Phys Chem Lett; 2011 Jan; 2(1):1-6. PubMed ID: 26295205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiexciton generation by a single photon in nanocrystals.
    Shabaev A; Efros AL; Nozik AJ
    Nano Lett; 2006 Dec; 6(12):2856-63. PubMed ID: 17163719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.