These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 27725751)

  • 1. Cleaning patch-clamp pipettes for immediate reuse.
    Kolb I; Stoy WA; Rousseau EB; Moody OA; Jenkins A; Forest CR
    Sci Rep; 2016 Oct; 6():35001. PubMed ID: 27725751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immediate reuse of patch-clamp pipettes after ultrasonic cleaning.
    Jehasse K; Jouhanneau JS; Wetz S; Schwedt A; Poulet JFA; Neumann-Raizel P; Kampa BM
    Sci Rep; 2024 Jan; 14(1):1660. PubMed ID: 38238544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method for Rapid Enzymatic Cleaning for Reuse of Patch Clamp Pipettes: Increasing Throughput by Eliminating Manual Pipette Replacement between Patch Clamp Attempts.
    Landry CR; Yip MC; Kolb I; Stoy WA; Gonzalez MM; Forest CR
    Bio Protoc; 2021 Jul; 11(14):e4085. PubMed ID: 34395724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure polishing: a method for re-shaping patch pipettes during fire polishing.
    Goodman MB; Lockery SR
    J Neurosci Methods; 2000 Jul; 100(1-2):13-5. PubMed ID: 11040361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure-polishing pipettes for improved patch-clamp recording.
    Johnson BE; Brown AL; Goodman MB
    J Vis Exp; 2008 Oct; (20):. PubMed ID: 19078936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PatcherBot: a single-cell electrophysiology robot for adherent cells and brain slices.
    Kolb I; Landry CR; Yip MC; Lewallen CF; Stoy WA; Lee J; Felouzis A; Yang B; Boyden ES; Rozell CJ; Forest CR
    J Neural Eng; 2019 Aug; 16(4):046003. PubMed ID: 30970335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Making patch-pipettes and sharp electrodes with a programmable puller.
    Brown AL; Johnson BE; Goodman MB
    J Vis Exp; 2008 Oct; (20):. PubMed ID: 19078940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catch and Patch: A Pipette-Based Approach for Automating Patch Clamp That Enables Cell Selection and Fast Compound Application.
    Danker T; Braun F; Silbernagl N; Guenther E
    Assay Drug Dev Technol; 2016 Mar; 14(2):144-55. PubMed ID: 26991363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New techniques for making whole-cell recordings from CNS neurons in vivo.
    Rose GJ; Fortune ES
    Neurosci Res; 1996 Sep; 26(1):89-94. PubMed ID: 8895897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microchip amplifier for in vitro, in vivo, and automated whole cell patch-clamp recording.
    Harrison RR; Kolb I; Kodandaramaiah SB; Chubykin AA; Yang A; Bear MF; Boyden ES; Forest CR
    J Neurophysiol; 2015 Feb; 113(4):1275-82. PubMed ID: 25429119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Culturing and electrophysiology of cells on NRCC patch-clamp chips.
    Py C; Martina M; Monette R; Comas T; Denhoff MW; Luk C; Syed NI; Mealing G
    J Vis Exp; 2012 Feb; (60):. PubMed ID: 22348948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dry beveling micropipettes using a computer hard drive.
    Canfield JG
    J Neurosci Methods; 2006 Nov; 158(1):19-21. PubMed ID: 16782203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of autopatching with automated pipette and cell detection in vitro.
    Wu 吴秋雨 Q; Kolb I; Callahan BM; Su Z; Stoy W; Kodandaramaiah SB; Neve R; Zeng H; Boyden ES; Forest CR; Chubykin AA
    J Neurophysiol; 2016 Oct; 116(4):1564-1578. PubMed ID: 27385800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid coating of glass-capillary microelectrodes for single-electrode voltage-clamp.
    Juusola M; Seyfarth EA; French AS
    J Neurosci Methods; 1997 Feb; 71(2):199-204. PubMed ID: 9128157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomous patch-clamp robot for functional characterization of neurons in vivo: development and application to mouse visual cortex.
    Holst GL; Stoy W; Yang B; Kolb I; Kodandaramaiah SB; Li L; Knoblich U; Zeng H; Haider B; Boyden ES; Forest CR
    J Neurophysiol; 2019 Jun; 121(6):2341-2357. PubMed ID: 30969898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Automated Image-guided Patch Clamp for the Study of Neurons in Brain Slices.
    Wu Q; Chubykin AA
    J Vis Exp; 2017 Jul; (125):. PubMed ID: 28784955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent pipettes for optically targeted patch-clamp recordings.
    Ishikawa D; Takahashi N; Sasaki T; Usami A; Matsuki N; Ikegaya Y
    Neural Netw; 2010 Aug; 23(6):669-72. PubMed ID: 20223634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology.
    Andrásfalvy BK; Galiñanes GL; Huber D; Barbic M; Macklin JJ; Susumu K; Delehanty JB; Huston AL; Makara JK; Medintz IL
    Nat Methods; 2014 Dec; 11(12):1237-1241. PubMed ID: 25326662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Planar patch clamp for neuronal networks--considerations and future perspectives.
    Bosca A; Martina M; Py C
    Methods Mol Biol; 2014; 1183():93-113. PubMed ID: 25023304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optopatcher--an electrode holder for simultaneous intracellular patch-clamp recording and optical manipulation.
    Katz Y; Yizhar O; Staiger J; Lampl I
    J Neurosci Methods; 2013 Mar; 214(1):113-7. PubMed ID: 23370312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.