These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27725755)

  • 21. Theory of photon statistics and optical coherence in a multiple-scattering random-laser medium.
    Florescu L; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046603. PubMed ID: 15169114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method.
    Martelli F; Zaccanti G
    Opt Express; 2007 Jan; 15(2):486-500. PubMed ID: 19532267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Narrowband random lasing in a Bismuth-doped active fiber.
    Lobach IA; Kablukov SI; Skvortsov MI; Podivilov EV; Melkumov MA; Babin SA; Dianov EM
    Sci Rep; 2016 Jul; 6():30083. PubMed ID: 27435232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Directing random lasing emission using cavity exciton-polaritons.
    Bouteyre P; Son Nguyen H; Lauret JS; Trippé-Allard G; Delport G; Lédée F; Diab H; Belarouci A; Seassal C; Garrot D; Bretenaker F; Deleporte E
    Opt Express; 2020 Dec; 28(26):39739-39749. PubMed ID: 33379517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Refractive Index Fiber Laser Sensor by Using a Fiber Ball Lens Interferometer with Adjustable Free Spectral Range.
    Álvarez-Tamayo RI; Prieto-Cortés P
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Colloidal quantum dot random laser.
    Chen Y; Herrnsdorf J; Guilhabert B; Zhang Y; Watson IM; Gu E; Laurand N; Dawson MD
    Opt Express; 2011 Feb; 19(4):2996-3003. PubMed ID: 21369124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stability-Enhanced Emission Based on Biophotonic Crystals in Liquid Crystal Random Lasers.
    Shang Z; Wang Z; Dai G
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formaldehyde passive sampler using an optical chemical sensor: how to limit the humidity interference.
    Vignau-Laulhere J; Mocho P; Plaisance H; Raulin-Woznica K; Tran-Thi TH; Desauziers V
    Anal Bioanal Chem; 2017 Oct; 409(26):6245-6252. PubMed ID: 28808738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom.
    Fishkin JB; So PT; Cerussi AE; Fantini S; Franceschini MA; Gratton E
    Appl Opt; 1995 Mar; 34(7):1143-55. PubMed ID: 21037643
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel core-shell (TiO2@Silica) nanoparticles for scattering medium in a random laser: higher efficiency, lower laser threshold and lower photodegradation.
    Jimenez-Villar E; Mestre V; de Oliveira PC; de Sá GF
    Nanoscale; 2013 Dec; 5(24):12512-7. PubMed ID: 24170214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Waveguide random laser based on a disordered ZnSe-nanosheets arrangement.
    Yi J; Yu Y; Shang J; An X; Tu B; Feng G; Zhou S
    Opt Express; 2016 Mar; 24(5):5102-5109. PubMed ID: 29092338
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diffusive random laser modes under a spatiotemporal scope.
    García-Revilla S; Fernández J; Barredo-Zuriarrain M; Carlos LD; Pecoraro E; Iparraguirre I; Azkargorta J; Balda R
    Opt Express; 2015 Jan; 23(2):1456-69. PubMed ID: 25835903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polarized random laser emission from an oriented disorder polymer optical fiber.
    Hu Z; Liang Y; Qian X; Gao P; Xie K; Jiang H
    Opt Lett; 2016 Jun; 41(11):2584-7. PubMed ID: 27244420
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biofluidic Random Laser Cytometer for Biophysical Phenotyping of Cell Suspensions.
    He J; Hu S; Ren J; Cheng X; Hu Z; Wang N; Zhang H; Lam RHW; Tam HY
    ACS Sens; 2019 Apr; 4(4):832-840. PubMed ID: 30854844
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Label-Free Optical Biochemical Sensors via Liquid-Cladding-Induced Modulation of Waveguide Modes.
    Tran NHT; Kim J; Phan TB; Khym S; Ju H
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31478-31487. PubMed ID: 28849907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microchip Random Laser based on a disordered TiO2-nanomembranes arrangement.
    Dominguez CT; Lacroute Y; Chaumont D; Sacilotti M; de Araújo CB; Gomes AS
    Opt Express; 2012 Jul; 20(16):17380-5. PubMed ID: 23038290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A fractional diffusion random laser.
    Chen Y; Fiorentino A; Dal Negro L
    Sci Rep; 2019 Jun; 9(1):8686. PubMed ID: 31213618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synergy between plasmonic nanocavities and random lasing modes: a tool to dequench plasmon quenched fluorophore emission.
    Yadav R; Pal S; Jana S; Roy S; Debnath K; Ray SK; Brundavanam MM; Bhaktha B N S
    Phys Chem Chem Phys; 2023 Oct; 25(41):28336-28349. PubMed ID: 37840472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-time physical random bit generation at Gbps based on random fiber lasers.
    Xu Y; Lu P; Mihailov S; Bao X
    Opt Lett; 2017 Dec; 42(23):4796-4799. PubMed ID: 29216112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amplified extended modes in random lasers.
    Mujumdar S; Ricci M; Torre R; Wiersma DS
    Phys Rev Lett; 2004 Jul; 93(5):053903. PubMed ID: 15323697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.