These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 27725841)
1. Numerical Investigation of Flow Characteristics in the Obstructed Realistic Human Upper Airway. Liu X; Yan W; Liu Y; Choy YS; Wei Y Comput Math Methods Med; 2016; 2016():3181654. PubMed ID: 27725841 [TBL] [Abstract][Full Text] [Related]
2. Investigation of airflow field in the upper airway under unsteady respiration pattern using large eddy simulation method. Cui X; Wu W; Ge H Respir Physiol Neurobiol; 2020 Aug; 279():103468. PubMed ID: 32505518 [TBL] [Abstract][Full Text] [Related]
3. On locating the obstruction in the upper airway via numerical simulation. Wang Y; Elghobashi S Respir Physiol Neurobiol; 2014 Mar; 193():1-10. PubMed ID: 24389271 [TBL] [Abstract][Full Text] [Related]
4. Numerical study of the effects of bronchial structural abnormalities on respiratory flow distribution. Yu S; Wang J; Sun X; Liu Y Biomed Eng Online; 2016 Dec; 15(Suppl 2):164. PubMed ID: 28155703 [TBL] [Abstract][Full Text] [Related]
5. Unsteady flow characteristics through a human nasal airway. Lee JH; Na Y; Kim SK; Chung SK Respir Physiol Neurobiol; 2010 Jul; 172(3):136-46. PubMed ID: 20471501 [TBL] [Abstract][Full Text] [Related]
6. Large Eddy Simulation and Reynolds-Averaged Navier-Stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea. Mihaescu M; Murugappan S; Kalra M; Khosla S; Gutmark E J Biomech; 2008 Jul; 41(10):2279-88. PubMed ID: 18514205 [TBL] [Abstract][Full Text] [Related]
7. Scale resolving simulations of the effect of glottis motion and the laryngeal jet on flow dynamics during respiration. Emmerling J; Vahaji S; Morton DAV; Fletcher DF; Inthavong K Comput Methods Programs Biomed; 2024 Apr; 247():108064. PubMed ID: 38382308 [TBL] [Abstract][Full Text] [Related]
8. Numerical study of the airflow structures in an idealized mouth-throat under light and heavy breathing intensities using large eddy simulation. Cui X; Wu W; Gutheil E Respir Physiol Neurobiol; 2018 Jan; 248():1-9. PubMed ID: 29128524 [TBL] [Abstract][Full Text] [Related]
9. Airflow limitation in a collapsible model of the human pharynx: physical mechanisms studied with fluid-structure interaction simulations and experiments. Le TB; Moghaddam MG; Woodson BT; Garcia GJM Physiol Rep; 2019 May; 7(10):e14099. PubMed ID: 31116516 [TBL] [Abstract][Full Text] [Related]
11. [Reconstruction of three-dimensional numerical model and numerical simulation of airflow in a human upper airway]. Qian YM; Chen LP; Wu YD; Jiao T Shanghai Kou Qiang Yi Xue; 2010 Jun; 19(3):310-4. PubMed ID: 20635047 [TBL] [Abstract][Full Text] [Related]
12. Numerical simulation for the upper airway flow characteristics of Chinese patients with OSAHS using CFD models. Tan J; Huang J; Yang J; Wang D; Liu J; Liu J; Lin S; Li C; Lai H; Zhu H; Hu X; Chen D; Zheng L Eur Arch Otorhinolaryngol; 2013 Mar; 270(3):1035-43. PubMed ID: 23377228 [TBL] [Abstract][Full Text] [Related]
13. Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results. Elcner J; Lizal F; Jedelsky J; Jicha M; Chovancova M Biomech Model Mechanobiol; 2016 Apr; 15(2):447-69. PubMed ID: 26163996 [TBL] [Abstract][Full Text] [Related]
14. Upper airway function and dysfunction in respiration. Pierce RJ; Worsnop CJ Clin Exp Pharmacol Physiol; 1999 Jan; 26(1):1-10. PubMed ID: 10027063 [TBL] [Abstract][Full Text] [Related]
15. The effect of nasal and oral breathing on airway collapsibility in patients with obstructive sleep apnea: Computational fluid dynamics analyses. Suzuki M; Tanuma T PLoS One; 2020; 15(4):e0231262. PubMed ID: 32282859 [TBL] [Abstract][Full Text] [Related]
16. The effect of airway motion and breathing phase during imaging on CFD simulations of respiratory airflow. Gunatilaka CC; Schuh A; Higano NS; Woods JC; Bates AJ Comput Biol Med; 2020 Dec; 127():104099. PubMed ID: 33152667 [TBL] [Abstract][Full Text] [Related]
17. Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways. Naseri A; Shaghaghian S; Abouali O; Ahmadi G Respir Physiol Neurobiol; 2017 Oct; 244():56-72. PubMed ID: 28673875 [TBL] [Abstract][Full Text] [Related]
18. 3D phase contrast MRI in models of human airways: Validation of computational fluid dynamics simulations of steady inspiratory flow. Collier GJ; Kim M; Chung Y; Wild JM J Magn Reson Imaging; 2018 Nov; 48(5):1400-1409. PubMed ID: 29630757 [TBL] [Abstract][Full Text] [Related]
19. Investigation of airflow at different activity conditions in a realistic model of human upper respiratory tract. Tabe R; Rafee R; Valipour MS; Ahmadi G Comput Methods Biomech Biomed Engin; 2021 Feb; 24(2):173-187. PubMed ID: 32940084 [TBL] [Abstract][Full Text] [Related]
20. In silico investigation of sneezing in a full real human upper airway using computational fluid dynamics method. Mortazavy Beni H; Hassani K; Khorramymehr S Comput Methods Programs Biomed; 2019 Aug; 177():203-209. PubMed ID: 31319949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]