These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27726037)

  • 21. Modelling the formation of necrotic regions in avascular tumours.
    Tindall MJ; Please CP; Peddie MJ
    Math Biosci; 2008 Jan; 211(1):34-55. PubMed ID: 18082225
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Test system for trifunctional antibodies in 3D MCTS culture.
    Hirschhaeuser F; Leidig T; Rodday B; Lindemann C; Mueller-Klieser W
    J Biomol Screen; 2009 Sep; 14(8):980-90. PubMed ID: 19675312
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional modeling of transport of nutrients for multicellular tumor spheroid culture in a microchannel.
    Hu G; Li D
    Biomed Microdevices; 2007 Jun; 9(3):315-23. PubMed ID: 17203380
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Implication of necrosis-linked p53 aggregation in acquired apoptotic resistance to 5-FU in MCF-7 multicellular tumour spheroids.
    Lee SY; Jeong EK; Jeon HM; Kim CH; Kang HS
    Oncol Rep; 2010 Jul; 24(1):73-9. PubMed ID: 20514446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical Coherence Tomography Detects Necrotic Regions and Volumetrically Quantifies Multicellular Tumor Spheroids.
    Huang Y; Wang S; Guo Q; Kessel S; Rubinoff I; Chan LL; Li P; Liu Y; Qiu J; Zhou C
    Cancer Res; 2017 Nov; 77(21):6011-6020. PubMed ID: 28904062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of the Chemotactic Response of Multicellular Spheroids in a Microfluidic Device.
    Ayuso JM; Basheer HA; Monge R; Sánchez-Álvarez P; Doblaré M; Shnyder SD; Vinader V; Afarinkia K; Fernández LJ; Ochoa I
    PLoS One; 2015; 10(10):e0139515. PubMed ID: 26444904
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A multiscale model for avascular tumor growth.
    Jiang Y; Pjesivac-Grbovic J; Cantrell C; Freyer JP
    Biophys J; 2005 Dec; 89(6):3884-94. PubMed ID: 16199495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling tumor cell adaptations to hypoxia in multicellular tumor spheroids.
    Riffle S; Hegde RS
    J Exp Clin Cancer Res; 2017 Aug; 36(1):102. PubMed ID: 28774341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction and validation of avascular tumor growth pattern in different metabolic conditions using
    Heidari M; Kabiri M
    J Bioinform Comput Biol; 2021 Oct; 19(5):2150024. PubMed ID: 34538226
    [No Abstract]   [Full Text] [Related]  

  • 30. Resistance of lung cancer cells grown as multicellular tumour spheroids to zinc sulfophthalocyanine photosensitization.
    Manoto SL; Houreld NN; Abrahamse H
    Int J Mol Sci; 2015 May; 16(5):10185-200. PubMed ID: 25950764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modelling solid tumour growth using the theory of mixtures.
    Byrne H; Preziosi L
    Math Med Biol; 2003 Dec; 20(4):341-66. PubMed ID: 14969384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mathematical and Experimental Model of Oxygen Diffusion for HepaRG Cell Spheroids.
    Aleksandrova AV; Pulkova NP; Gerasimenko TN; Anisimov NY; Tonevitskaya SA; Sakharov DA
    Bull Exp Biol Med; 2016 Apr; 160(6):857-60. PubMed ID: 27165074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonlinear studies of tumor morphological stability using a two-fluid flow model.
    Pham K; Turian E; Liu K; Li S; Lowengrub J
    J Math Biol; 2018 Sep; 77(3):671-709. PubMed ID: 29546457
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Early and late stage profiles for a chemotaxis model with density-dependent jump probability.
    Xu T; Ji S; Jin C; Mei M; Yin J
    Math Biosci Eng; 2018 Dec; 15(6):1345-1385. PubMed ID: 30418789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quasi-spherical microwells on superhydrophobic substrates for long term culture of multicellular spheroids and high throughput assays.
    Liu T; Winter M; Thierry B
    Biomaterials; 2014 Jul; 35(23):6060-8. PubMed ID: 24797879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mathematical modelling of avascular-tumour growth.
    Ward JP; King JR
    IMA J Math Appl Med Biol; 1997 Mar; 14(1):39-69. PubMed ID: 9080687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Semiautomatic growth analysis of multicellular tumor spheroids.
    Rodday B; Hirschhaeuser F; Walenta S; Mueller-Klieser W
    J Biomol Screen; 2011 Oct; 16(9):1119-24. PubMed ID: 21908797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical analysis of multicellular tumour spheroids.
    Jamieson LE; Harrison DJ; Campbell CJ
    Analyst; 2015 Jun; 140(12):3910-20. PubMed ID: 25923379
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A single-cell-based model of tumor growth in vitro: monolayers and spheroids.
    Drasdo D; Höhme S
    Phys Biol; 2005 Jul; 2(3):133-47. PubMed ID: 16224119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A mathematical model for the production and secretion of tumour angiogenesis factor in tumours.
    Chaplain MA; Sleeman BD
    IMA J Math Appl Med Biol; 1990; 7(2):93-108. PubMed ID: 2292664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.